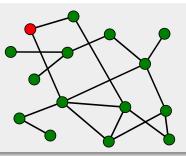
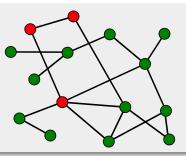

Reliable Recon in Adversarial P2P Botnets

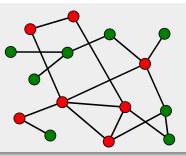
Dennis Andriesse[†], Christian Rossow[§], and Herbert Bos[†] [†]Vrije Universiteit Amsterdam [§]Saarland University Germany IMC 2015


Peer-to-Peer (P2P) botnets

- Centralized botnets are vulnerable because of their C2 servers
- P2P botnets have no centralized C2 servers
 - Every bot knows some of the other bots
 - Bots use P2P communication to spread commands
 - Much more resilient against takedowns


Attacking P2P botnets

- No centralized C2, must attack every bot directly
 - Report bot IPs to ISPs, poison bots, disinfect, ...
- All attacks (incl. recent GOZ takedown) require recon
- Most common reconnaissance strategy is *crawling*
 - 1 Start with a few known bots
 - 2 Pretend to be a neighbor and recursively ask for more bots


Attacking P2P botnets

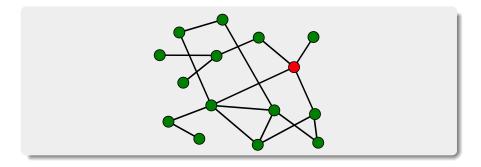
- No centralized C2, must attack every bot directly
 - Report bot IPs to ISPs, poison bots, disinfect, ...
- All attacks (incl. recent GOZ takedown) require recon
- Most common reconnaissance strategy is *crawling*
 - 1 Start with a few known bots
 - 2 Pretend to be a neighbor and recursively ask for more bots

Attacking P2P botnets

- No centralized C2, must attack every bot directly
 - Report bot IPs to ISPs, poison bots, disinfect, ...
- All attacks (incl. recent GOZ takedown) require recon
- Most common reconnaissance strategy is *crawling*
 - 1 Start with a few known bots
 - 2 Pretend to be a neighbor and recursively ask for more bots

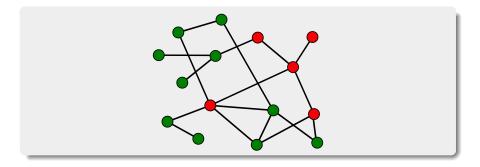
But what if crawlers are detected?

- Any kind of anomalous behavior can be used to detect crawlers
- Detected crawlers are open to a multitude of attacks
 - Blacklisting, retaliation, disinformation, ...
 - Already observe many of these in GOZ (incl. auto-blacklisting), Sality, ZeroAccess, Hlux, ...
- We infiltrated Sality and GOZ and studied crawler quality

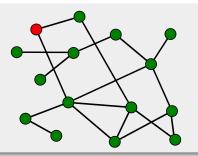

Crawler defects in GOZ and Sality

- 21 major crawlers in GOZ, 11 in Sality, all major protocol defects
- Operated by well-known malware analysis companies and CERTs

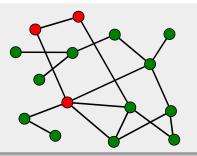
Defect	# of crawlers
Constrained RND/TTL/LOP/session ID	17
Low entropy session ID/bot ID/padding	10
Too many requests/only peer requests	17
Bad encryption	7
Most common defects in GOZ crawlers (more in paper)
Most common defects in GOZ crawlers (Defect	more in paper) # of crawlers
Defect	,
	# of crawlers
Defect Constrained LOP/port	# of crawlers

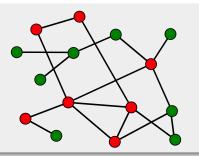

Inherent crawler detectability

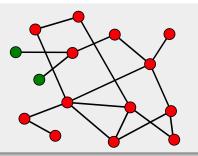
• Normal bots contact only a handful of peers (their neighbors)

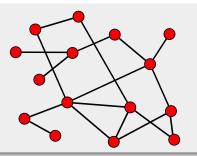


Inherent crawler detectability

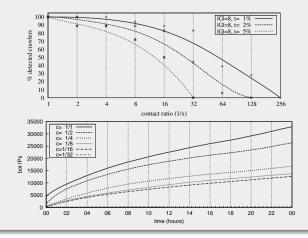

• Normal bots contact only a handful of peers (their neighbors)


- Efficient crawlers contact (nearly) all bots to map the botnet
- This is abnormal, and *cannot be fixed* without sacrificing coverage (even minimum vertex cover may be too aggressive)
- We design an algorithm to detect crawlers by network coverage
 - Bots share who contacted them, "hard hitters" are crawlers


- Efficient crawlers contact (nearly) all bots to map the botnet
- This is abnormal, and *cannot be fixed* without sacrificing coverage (even minimum vertex cover may be too aggressive)
- We design an algorithm to detect crawlers by network coverage
 - Bots share who contacted them, "hard hitters" are crawlers


- Efficient crawlers contact (nearly) all bots to map the botnet
- This is abnormal, and *cannot be fixed* without sacrificing coverage (even minimum vertex cover may be too aggressive)
- We design an algorithm to detect crawlers by network coverage
 - Bots share who contacted them, "hard hitters" are crawlers

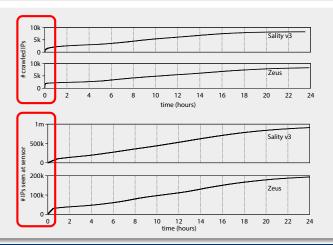
- Efficient crawlers contact (nearly) all bots to map the botnet
- This is abnormal, and *cannot be fixed* without sacrificing coverage (even minimum vertex cover may be too aggressive)
- We design an algorithm to detect crawlers by network coverage
 - Bots share who contacted them, "hard hitters" are crawlers



- Efficient crawlers contact (nearly) all bots to map the botnet
- This is abnormal, and *cannot be fixed* without sacrificing coverage (even minimum vertex cover may be too aggressive)
- We design an algorithm to detect crawlers by network coverage
 - Bots share who contacted them, "hard hitters" are crawlers

Avoiding detection

- Our algorithm detects all GOZ crawlers without false positives
- · Crawlers must sacrifice coverage to evade detection


Stealthy Crawling

- Contact Ratio Limiting/Request Frequency Limiting
 - Performance/coverage issues (see previous slide)
- Distributed Crawling (distribute/rotate egress traffic source IPs)
 - Works for GOZ given \geq 32 distinct /20's, or a /16
- Anonymizing Proxies (with fast IP rotation)
 - Feasible given sufficient network block (which may not leak)

Alternative Recon

Passive Sensors

- Far better coverage than crawlers (no NAT/firewall issues)
- In contrast to crawlers, sensors verify authenticity of each bot

Internet-Wide Scanning

- Proposed as alternative recon strategy, e.g. for ZeroAccess
- Does not generalize
 - Port range often too large to scan
 - Suitable probes may not exist (e.g., due to encryption etc.)
 - NAT traversal issues

	Fixed port	Probe msg	Susceptible	
GOZ	X	X	×	
Sality	X	1	x	
ZeroAccess	1	1	1	
Kelihos/Hlux	1	1	1	
Waledac	X	1	X	
Storm	X	1	X	
Susceptibility of P2P botnets to Internet-wide scanning				

Where to go from here?

- Crawlers are most popular recon, but offer poor stealth/coverage
- All efforts against P2P botnets hinge on reliable recon
- Fix your crawlers, or switch to alternatives!