
Parallax: Implicit Code Integrity Verification
Using Return-Oriented Programming

Dennis Andriesse, Herbert Bos and Asia Slowinska

VU University Amsterdam

DSN 2015

Introduction

Code Integrity Self-Verification on a Hostile Host
Delay tampering/reversing of software by verifying code integrity
Application-level: No hardware/kernel support or verification servers
Prevent malware reversing, cracking, protect critical systems, . . .

Dennis Andriesse (VU University) Parallax DSN 2015 1 / 13

Introduction

Code Integrity Self-Verification on a Hostile Host
Existing work uses checksums → broken by Würster et al.
Oblivious Hashing works, but checks only deterministic program states
Parallax verifies deterministic and non-deterministic paths

Dennis Andriesse (VU University) Parallax DSN 2015 2 / 13

Introduction

Return-Oriented Programming
Parallax is based on Return-Oriented Programming (ROP)
Originally used in exploits to circumvent W⊕X
Craft ROP programs on stack by chaining returns to gadgets

esp
&g1

constant

&g2

&gn

pop eax

ret

add esi,eax

ret

Dennis Andriesse (VU University) Parallax DSN 2015 3 / 13

Parallax Overview
Protecting Code

Parallax intentionally creates gadgets to overlap with protected code
One or more code regions are translated into ROP verification code
Verification code uses the gadgets in the protected code
Tampering breaks gadgets → verification fails, implicit detection
Gadgets can be “unaligned” relative to original instruction stream!
Parallax can be implemented entirely at the binary level

Dennis Andriesse (VU University) Parallax DSN 2015 4 / 13

Parallax Example
Ptrace detector
n+38 <cleanup_and_exit>:
n+38: 55 push ebp
n+39: 89 e5 mov ebp,esp
n+3b: 83 ec 18 sub esp,24
n+3e: 89 04 24 mov [esp],eax
n+41: e8 d5 fe ff ff call exit@plt

n+46 <check_ptrace>:
n+46: 55 push ebp
n+47: 89 e5 mov ebp,esp
n+49: 83 ec 18 sub esp,24
n+4c: c7 44 24 0c 00 00 00 00 mov [esp+0xc],0
n+54: c7 44 24 08 00 00 00 00 mov [esp+0x8],0
n+5c: c7 44 24 04 00 00 00 00 mov [esp+0x4],0
n+64: c7 04 24 00 00 00 00 mov [esp],0
n+6b: e8 cb fe ff ff call ptrace@plt
n+70: 85 c0 test eax,eax
n+72: 79 07 jns n+7b
n+74: b8 01 00 00 00 mov eax,1
n+79: eb bd jmp n+38
n+7b: b8 00 00 00 00 mov eax,0
n+80: c9 leave
n+81: c3 ret

Dennis Andriesse (VU University) Parallax DSN 2015 5 / 13

Parallax Example
Ptrace detector
n+38 <cleanup_and_exit>:
n+38: 55 push ebp
n+39: 89 e5 mov ebp,esp
n+3b: 83 ec 18 sub esp,24
n+3e: 89 04 24 mov [esp],eax
n+41: e8 d5 fe ff ff call exit@plt

n+46 <check_ptrace>:
n+46: 55 push ebp
n+47: 89 e5 mov ebp,esp
n+49: 83 ec 18 sub esp,24
n+4c: c7 44 24 0c 00 00 00 00 mov [esp+0xc],0
n+54: c7 44 24 08 00 00 00 00 mov [esp+0x8],0
n+5c: c7 44 24 04 00 00 00 00 mov [esp+0x4],0
n+64: c7 04 24 00 00 00 00 mov [esp],0
n+6b: e8 cb fe ff ff call ptrace@plt
n+70: 85 c0 test eax,eax
n+72: 79 07 jns n+7b
n+74: b8 01 00 00 00 mov eax,1
n+79: eb bd jmp n+38
n+7b: b8 00 00 00 00 mov eax,0
n+80: c9 leave
n+81: c3 ret

Dennis Andriesse (VU University) Parallax DSN 2015 6 / 13

(gdb) set *(unsigned char*)0x08048479=0x90
(gdb) set *(unsigned char*)0x0804847a=0x90

Parallax Example
Ptrace detector
n+32 <cleanup_and_exit>: (relocated)
n+32: 55 push ebp
n+33: 89 e5 mov ebp,esp
n+35: 83 ec 18 sub esp,24
n+38: 89 04 24 mov [esp],eax
n+3b: e8 d5 fe ff ff call exit@plt

n+46 <check_ptrace>:
n+46: 55 push ebp
n+47: 89 e5 mov ebp,esp
n+49: 83 ec 18 sub esp,24
n+4c: c7 44 24 0c 00 00 00 00 mov [esp+0xc],0
n+54: c7 44 24 08 00 00 00 00 mov [esp+0x8],0
n+5c: c7 44 24 04 00 00 00 00 mov [esp+0x4],0
n+64: c7 04 24 00 00 00 00 mov [esp],0
n+6b: e8 cb fe ff ff call ptrace@plt (existing far ret)
n+70: 85 c0 test eax,eax
n+72: 79 07 jns n+7b
n+74: b8 c3 00 00 00 mov eax,0xc3 (modify exit arg)
n+79: eb c3 jmp n+32 (modify target)
n+7b: b8 00 00 00 00 mov eax,0
n+80: c9 leave
n+81: c3 ret

Dennis Andriesse (VU University) Parallax DSN 2015 7 / 13

Protected Code

Binary Rewriting Rules
Parallax uses existing gadgets, plus binary rewriting as needed
Several binary rewriting rules in current prototype:

I Modify immediate operands, and split instruction to compensate
I Rearrange code/data to encode (partial) gadgets in offsets
I Use add for memory operations if mov cannot be encoded
I Use retf (far return) if a ret cannot be encoded
I Insert spurious instructions to encode missing gadget prefixes/suffixes

Dennis Andriesse (VU University) Parallax DSN 2015 8 / 13

Verification Code

Function-Level Verification
Select function(s) to use as verification code at binary or source level
Use modified ROPC compiler to generate verification function
Verification function uses gadgets used to protect code

Dynamically Generated Function Chains
Function chains live in data memory → can be generated dynamically
Enables encryption, self-modification, random selection from
equivalent gadgets

Instruction-Level Verification
Experiments with fine-grained verification code → high overhead due
to setup/teardown (2× compared to function-level)

Dennis Andriesse (VU University) Parallax DSN 2015 9 / 13

Attack Resistance

Code Restoration Attacks (restore modified code after execution)
Main threat to any tamperproofing scheme (not applicable in cracking)
Parallax complicates this by choosing verification code that runs often
Verification code is decoupled from protected code → hard to pinpoint

Verification code replacement
Adversary must craft equivalent code → ROP code hard to reverse
Dynamically generated/self-modifying verification code even stronger

Verification code modification
Again, adversary must reverse ROP code first
Verification code is data → protectable with (network of) checksums

Dennis Andriesse (VU University) Parallax DSN 2015 10 / 13

Evaluation
Coverage and Performance

Parallax protects up to 90% of code bytes with gadget length ≤ 6, not
using spurious instructions (not simultaneously, as rules may conflict)
Performance overhead < 4% if verification code outside critical path

Runtime Overhead (Function-Level Verification)

 0%

 1%

 2%

 3%

 4%

wget nginx bzip2 gzip gcc lame

T
ot

al
 r

un
tim

e
ov

er
he

ad clear
xor crypt
rc4 crypt
linear combination

Dennis Andriesse (VU University) Parallax DSN 2015 11 / 13

Discussion

Dynamic Circumvention
Parallax protects code against explicit modification
Cannot detect dynamic non-explicit code patching (Pin, DynamoRIO)
Parallax can instead protect specialized detection code for this

Control-Flow Integrity
Use of ROP requires special consideration when combined with
Control-Flow Integrity (CFI)

Protection Coverage (vs Oblivious Hashing)
Parallax protects input-/environment-based code that OH cannot

I Arguably, such code is the most interesting to attackers

In contrast to OH, Parallax requires no offline testing to compute valid
states → can protect even untested/unexplored code

Dennis Andriesse (VU University) Parallax DSN 2015 12 / 13

Conclusion

Summary
Parallax enables tamperproofing on deterministic and non-deterministic
paths, without susceptibility to the attack of Würster et al.
Up to 90% of code bytes can be protected with gadget length ≤ 6
Wisely chosen verification code keeps runtime overhead under 4%
Performance overhead is in verification code only, isolated from
protected code
Verification code resides in data memory → traditional tamperproofing
techniques re-enabled for multi-layered protection

Dennis Andriesse (VU University) Parallax DSN 2015 13 / 13

