
An Analysis of the Zeus Peer-to-Peer Protocol

Dennis Andriesse and Herbert Bos

VU University Amsterdam, The Netherlands

{d.a.andriesse,h.j.bos}@vu.nl

Technical Report IR-CS-74, rev. April 10, 2014

Abstract

Zeus is a family of credential-stealing trojans which originally appeared in 2007. The first two

variants of Zeus are based on centralized command servers. These command servers are now routinely

tracked and blocked by the security community. In an apparent effort to withstand these routine

countermeasures, the second version of Zeus was forked into a peer-to-peer variant in September 2011.

This paper describes our insights into the topology and communication protocol of the peer-to-peer

variant of Zeus.

1 Introduction

Since its first appearance in 2007, Zeus has grown
into one of the most popular families of credential-
stealing trojans. Due to its popularity, previous
versions of Zeus have been extensively investigated
by the security community [5, 12]. The internals
of the first two versions of Zeus, which are based
on centralized command and control (C2) servers,
are well understood, and C2 servers used by these
variants are routinely tracked and blocked [1].

In September 2011, the second centralized ver-
sion of Zeus mutated into a peer-to-peer (P2P) vari-
ant, known as P2P Zeus or Gameover. Since P2P
Zeus does not rely on centralized C2, it is immune
to traditional countermeasures against Zeus.

Centralized Zeus variants are distributed as
builder kits in the underground community, allow-
ing each user to build a private Zeus botnet. Inter-
estingly, this is no longer supported in P2P Zeus,
which is based on a single coherent main P2P net-
work. The main P2P network is divided into sev-
eral virtual sub-botnets by a hardcoded sub-botnet
identifier in each bot binary. While the Zeus P2P
network is maintained and periodically updated as a
whole, the sub-botnets are independently controlled
to perform various malicious tasks. Our bot enu-
meration results indicate that the Zeus P2P net-
work contains at least 200.000 bots [9]. The ge-
ographical distribution of the externally reachable
peers is shown in Figure 1.

The Zeus P2P network serves two main pur-
poses. (1) Bots exchange binary and configuration
updates with each other. (2) Bots exchange lists

of proxy bots, which are special bots where stolen
data can be dropped and commands can be re-
trieved. Additionally, bots exchange neighbor lists
(peer lists) with each other to maintain a coherent
network. P2P Zeus also uses a Domain Name Gen-
eration Algorithm (DGA) [2] as a backup channel,
in case contact with the regular P2P network is lost
or is found to be non-functional.

This paper provides technical details on the
topology and communication protocol of P2P Zeus.
Our results are based on P2P Zeus variants we ob-
served between February 2012 and April 2014. A
comparison of the resilience of the Zeus P2P pro-
tocol to other P2P botnet protocols is provided in
our earlier work [9]. The lifecycle of P2P Zeus has
been analyzed by Stone-Gross [10]. Early insights
on P2P Zeus were provided by abuse.ch [11] and
Lelli [7], and more recent insights by CERT.pl [4].

The rest of this paper is organized as follows.
In Section 2, we provide a description of the topol-
ogy of the Zeus P2P network. Next, Section 3 de-
scribes the communication protocol in detail. Sec-
tion 4 provides details on the Domain Generation
Algorithm used as a backup channel by P2P Zeus.
Finally, Section 5 concludes on our findings.

2 Network Topology

The Zeus network is organized into three disjoint
layers, as shown in Figure 2. At the bottom of the
hierarchy is the P2P layer, which contains the har-
vester bots. Periodically, a subset of the bots is as-
signed the status of proxy bot (shaded in Figure 2).
This appears to be done manually by the botmas-

1



Figure 1: Geographical distribution of externally reachable Zeus peers.

ters, and is achieved by pushing a signed proxy an-

nouncement message into the network. The details
of this mechanism are explained in Section 3. The
proxy bots are used by harvester bots to fetch com-
mands and drop stolen data. Apart from their role
as proxies, proxy bots continue to exhibit the same
behavior as harvester bots.

An important deviation from this behavior was
introduced in some Zeus variants in March 2014.
These variants use the Domain Generation Algo-
rithm (Section 4) as the main C2 channel, and re-
vert to the proxy bots only if the DGA cannot be
reached. This behavior is not consistent as of April
2014; some live variants still use the proxy bots,
while others default to the DGA. It is not yet clear
which approach will become the default.

The proxy bots act as intermediaries between
the P2P layer and a higher layer, which we call the
C2 proxy layer. The C2 proxy layer contains sev-
eral dedicated HTTP servers (not bots), which form
an additional layer between the proxy bots and the
true root of the C2 communication. Periodically,
the proxy bots interact with the C2 proxy layer in
order to update their command repository, and to
forward the stolen data collected from the bots up-
ward in the hierarchy.

Finally, at the top of the hierarchy is the C2

layer, which is the source of commands and the end
destination of stolen data. Commands propagate
downward from the C2 layer, through the C2 proxy
layer to the proxy bots, where they are fetched by
harvester bots. Similarly, data stolen by harvester
bots is collected by the proxy bots, and periodi-
cally propagated up until it ultimately reaches the
C2 layer.

P2P Layer

C2 Proxy Layer

C2 Layer

Figure 2: Topology of P2P Zeus. Proxy bots are
shaded. The dotted line shows the information flow
between a harvester bot and the C2 layer.

As mentioned in Section 1, the main P2P net-
work is divided into several virtual sub-botnets by
a hardcoded sub-botnet identifier in each bot bi-
nary. Since each of these sub-botnets is indepen-
dently controlled, the C2 layer may contain multiple
command sources and data sinks.

3 P2P Protocol

This section describes our analysis results on
the Zeus P2P communication protocol. The re-
sults are based on Zeus variants we tracked between
February 2012 and April 2014. In that time, sev-
eral changes were made to the protocol by the Zeus
authors. This section describes our current under-
standing of the protocol, based on the most recent
variants we analyzed. However, note that results

2



; int zeus_xor_decrypt(void *src, void *dst<edx>, int len<eax>)

cmp [esp + src], edx ; are src and dst arrays the same?

jz short loop_preamble ; if so, go straight to the loop

push eax ; else push arguments...

push [esp + src]

push edx

call memcpy ; ...and call memcpy

jmp short loop_preamble

loop_main:

mov cl , [eax + edx - 1] ; load previous byte

xor [eax + edx], cl ; and xor it with current byte

loop_preamble:

dec eax

jnz short loop_main

retn 4

Figure 3: The deprecated Zeus rolling XOR decryption algorithm.

may differ for Zeus variants released after the revi-
sion date of this report.

We provide an overview of the Zeus P2P proto-
col in Section 3.1. Next, we describe the encryp-
tion used in Zeus traffic in Section 3.2. Sections 3.3
and 3.4 provide a detailed overview of the Zeus mes-
sage structure. Finally, Section 3.5 describes the
Zeus protocol state machine.

3.1 Overview

As mentioned in Section 1, the Zeus P2P network’s
main functions are (1) to facilitate the exchange
of binary and configuration updates among bots,
and (2) to propagate lists of proxy bots. Most nor-
mal communication between bots is based on UDP.
The exceptions are C2 communication between bots
and proxies, and binary/configuration update ex-
changes, both of which are TCP-based.

Bootstrapping onto the network is achieved
through a hardcoded bootstrap peer list. This list
contains the IP addresses, ports and unique identi-
fiers of up to 50 Zeus bots. Zeus ports range from
1024 to 10000 for Zeus variants released after June
2013, and from 10000 to 30000 for older variants.
Unique identifiers are 20 bytes long and are gen-
erated at infection time by taking a SHA-1 hash
over the Windows ComputerName and the Volume
ID of the first hard-drive. These unique identifiers
are used to keep contact information for bots with
dynamic IPs up-to-date.

Network coherence is maintained through a
push-/pull-based peer list exchange mechanism.
Zeus generally prefers to push peer list updates;
when a bot receives a message from another bot,
it adds this other bot to its local peer list if the list
contains less than 50 peers. Bots in desperate need
of new neighbors can also actively ask other bots
for new peers.

Zeus bots check the responsiveness of their

neighbors every 30 minutes. Each neighbor is con-
tacted in turn, and given 5 opportunities to re-
ply. If a neighbor does not reply within 5 retries,
it is deemed unresponsive, and is discarded from
the peer list. During this verification round, every
neighbor is asked for its current binary and configu-
ration file version numbers. If a neighbor has an up-
date available, the probing bot spawns a new thread
to download the update. Updates are signed using
RSA-2048, and are only applied after the bot has
checked that the update’s embedded version num-
ber is higher than its current version. Thus, it is not
possible to force bots to “update” to older versions.

The neighbor verification round is also used to
pull peer list updates if necessary. If the probing
bot’s peer list contains less than 25 peers, it asks
each of its neighbors for a list of new neighbors. The
returned peer lists can contain up to 10 peers. The
returned peers are selected by minimal Kademlia-
like XOR distance to the requesting bot’s identi-
fier [8]. However, it is important to note that the
Zeus P2P network is not a Distributed Hash Table,
and apart from this XOR metric the protocol bears
no resemblance to Kademlia.

In case a Zeus bot finds all of its neighbors to
be unresponsive, it attempts to re-bootstrap onto
the network by contacting the peers in its hard-
coded peer list. If this also fails, the bot switches
to a Domain Generation Algorithm (DGA) backup
channel, which can be used to retrieve a fresh, RSA-
2048 signed, peer list. Additionally, in recent vari-
ants of Zeus, the DGA channel is also contacted if
a bot is unable to retrieve updates for a week or
more. The DGA mechanism is described in more
detail in Section 4.

As mentioned, one of the most important func-
tions of the Zeus P2P network is to propagate lists
of proxy bots. These proxy bots are a periodi-
cally selected subset of the general bot population,
and are contacted by other bots to fetch commands

3



0 159

rnd
(1B)

TTL
(1B)

LOP
(1B)

type
(1B)

session ID (20 bytes)

source ID (20 bytes)















Header

payload + padding
...

Figure 4: The Zeus message structure.

and drop stolen data. Like the peer list exchange
mechanism, the proxy list propagation mechanism
is also push-/pull-based. The botmasters appoint
new proxy bots by pushing an RSA-2048 signed
message, which is disseminated through the net-
work using gossiping. This is the preferred proxy
list update mechanism. However, bots in desperate
need of a proxy list update can also actively request
this from other bots.

Bots are commanded in two ways. (1) Bots can
contact proxies to retrieve commands. (2) Config-
uration file updates can be used to effectively com-
mand the bots.

3.2 Encryption

Until recently, bot traffic was encrypted using a
rolling XOR algorithm, known as “visual encryp-
tion” from centralized Zeus [12], which encrypts
each byte by XORing it with the preceding byte
(see Figure 3). Since June 2013, Zeus uses RC4 in-
stead of the XOR algorithm, using the recipient’s
bot identifier as the key. This new RC4 encryp-
tion is problematic for infiltration attempts which
use randomized bot identifiers, as infiltrators must
know under which identifier they are known to other
bots in order to decrypt inbound traffic.

Zeus uses RSA-2048 to sign sensitive messages
originating from the botmasters, such as updates
and proxy announcements. Additionally, in all P2P
Zeus variants we studied, update exchanges and C2
messages feature RC4 encryption over an XOR en-
cryption layer. For these messages, the identifier of
the receiving bot or a hardcoded value is used as
the RC4 key, depending on the message type.

3.3 Message Structure

This section describes the structure of Zeus network
messages. Zeus messages vary in size, but have a
minimum length of 44 bytes. The first 44 bytes of
each message form a header, while the remaining
bytes form a payload concatenated with an amount
of padding.

The Zeus message structure is illustrated in Fig-
ure 4. The shaded area at the beginning of the
figure does not represent part of the Zeus message
structure; it only serves to align the fields in the
figure. The meaning of each of the fields shown in
Figure 4 is explained below.

3.3.1 rnd (random)

In Zeus versions which use the XOR encryption,
this byte is set to a random value. This is done to
avoid leaking information, since the XOR encryp-
tion leaves the first byte in plaintext. In Zeus ver-
sions which use RC4 for message encryption, this
byte is set to the bitwise inverse of the first ses-
sion ID byte, so that it can be used to confirm that
packet decryption was successful. Backward com-
patibility with older bots is achieved by falling back
to the XOR encryption if RC4 decryption fails.

3.3.2 TTL (time to live)

The TTL field is usually unused, in which case it
is set to a random value, or to the bitwise inverse
of the second session ID byte for RC4-based vari-
ants. However, for certain message types, this field
serves as a time to live counter. A bot receiving
a message using the TTL field forwards it with a
decremented TTL. This continues iteratively until
the TTL reaches zero. For instance, this field is
used in proxy announcement messages to prevent
them from circulating forever.

3.3.3 LOP (length of padding)

Zeus messages end with a random amount of
padding bytes. This is most likely done to con-
fuse signature-based intrusion detection systems.
The length of padding field indicates the number
of padding bytes present at the end of a message.
When receiving a message, a Zeus bot inspects the
length of padding field, and then strips the padding
bytes off the message.

4



3.3.4 type

This field indicates the type of the message. The
message type is used to determine the structure of
the payload, and in certain cases the meaning of
some of the header fields, such as the TTL field.
Valid Zeus message types are described in Sec-
tion 3.4.

3.3.5 session ID

When a Zeus bot sends a request to a peer, it in-
cludes a random session ID in the request header.
The corresponding reply includes the same session
ID, and inbound replies with unexpected IDs are
discarded. This makes it more difficult for attack-
ers to blindly spoof Zeus messages.

3.3.6 source ID

This field contains the 20 byte bot identifier of the
sending bot. The source ID field facilitates the
push-based peer list update mechanism, where a
bot receiving a message adds the sender of the mes-
sage to its peer list in case the peer list contains less
than 50 peers.

3.3.7 payload

This is a variable-length field which contains a pay-
load dependent on the message type. The struc-
tures of relevant message payload types are de-
scribed in detail in Section 3.4.

3.3.8 padding

This field contains a random number of padding
bytes. The number of bytes contained in this field
is specified in the length of padding field in the mes-
sage header. Each of the padding bytes is a non-zero
randomly generated value.

3.4 Payload Structure

In this section, we describe the structure and us-
age of the most relevant Zeus message types. Each
of these message types is communicated over UDP,
except for C2 messages and updates, which are ex-
changed over a TCP connection.

3.4.1 Version request (type 0x00)

Version request messages are used to request a bot’s
current binary and configuration file version num-
bers. These messages typically contain no payload.
However, an optional payload containing a little en-
dian integer 1 may be present, followed by 4 ran-
dom bytes. Such a payload serves as a marker to
indicate that the requesting peer’s proxy list is too
short, and it wants to receive a type 0x06 proxy
reply message (see Section 3.4.7).

3.4.2 Version reply (type 0x01)

A version reply contains the version numbers of
the binary and configuration files that the sender
has. The binary version indicates which version of
Zeus the peer is running, while the configuration file
version indicates which Zeus configuration file the
peer has. A TCP port number is also sent. This
port can be contacted to download the updates via
TCP, although some Zeus variants also support us-
ing UDP data exchanges for this (see Sections 3.4.5
and 3.4.6). Version replies end with 12 random
bytes. The reply structure is shown in Figure 5.

0 31

binary version (4 bytes)

config file version (4 bytes)

TCP port (2 bytes)

random (12 bytes)

Figure 5: Version reply payload (22 bytes).

3.4.3 Peer list request (type 0x02)

Peer list requests are used to request new peers from
other bots. The requester adds these to its peer list,
or updates the IP addresses and ports of peers with
already known identifiers. Zeus bots do not usually
use peer list requests to learn about new peers. In-
stead, they usually rely on storing the senders of
incoming requests. Zeus only sends active peer list
requests if its peer list is becoming critically short
(less than 25 peers in the samples we analyzed).

The payload of a peer list request consists of a
20 byte identifier, followed by 8 random bytes. The
responding peer will return the peers from its own
peer list that are closest to the requested identifier.
The Zeus peer list request structure is illustrated in
Figure 6.

0 127

identifier (20 bytes)

random (8 bytes)

Figure 6: Peer list request payload (28 bytes).

3.4.4 Peer list reply (type 0x03)

Peer list replies contain 10 peers from the respond-
ing peer’s peer list which are closest to the requested
identifier. If the responding peer knows fewer than
10 peers, then as many as possible (potentially zero)
are returned. The payload length for a peer list re-
ply is always 450 bytes, large enough for 10 peer

5



list entries. If fewer than 10 peers are returned, the
remaining space is null-padded.

For each returned peer, the payload format is
as shown in Figure 7. The IP type field indicates
whether the peer is reachable via IPv4 or IPv6. A
value of 0 indicates IPv4, while 2 indicates IPv6.
The peer ID field contains the identifier of the peer,
and the remaining fields contain the IP address and
UDP port. If IPv4 is used, the IPv6 fields are ran-
domized. Similarly, if IPv6 is used, the IPv4 ad-
dress is randomized. Curiously, the IPv4 port is
not randomized, but only set to zero.

0 63

IP type
(1B)

peer ID (20 bytes)

IPv4 addr (4 bytes) IPv4 port
(2B)

IPv6 addr (16 bytes)

IPv6 port
(2B)

Figure 7: Peer struct (45 bytes).

3.4.5 Data request (type 0x04/0x68/0x6A)

UDP data requests (type 0x04) are used to request
binary or configuration updates via UDP. The mes-
sage structure is shown in Figure 8.

The payload of a UDP data request starts with a
byte indicating the kind of desired data. This byte
is set to 1 for a configuration file download, or to
2 for a binary update. The offset field indicates at
which word the responding peer should start trans-
mitting data, and the size field specifies how many
data bytes should be transmitted in the response.
The size field is typically set to 1360 bytes.

TCP data requests consist of a message header
with type 0x68 for a binary request, or type 0x6A

for a configuration request. The request is RC4 en-
crypted with the identifier of the recipient.

0 31

type (1B)

offset (2 bytes) size (2 bytes)

Figure 8: Data request payload (5 bytes).

3.4.6 Data reply (type 0x05/0x64/0x66)

UDP data replies (type 0x05) contain requested
data. The data length is 1360 bytes, except if no
more data is available. If a bot downloading a file
receives a data reply with under 1360 data bytes,
it assumes this is the last data block, and ends the
download. If a data reply takes more than 5 seconds

to arrive, the download is aborted. The maximum
download size limit is 10MB, enforced by the re-
ceiving bot.

Each data reply starts with a 4 byte file identi-
fier, for which any value is valid as long as all data
replies belonging to the same file use the same iden-
tifier. The file identifier is followed by the requested
data. This structure is shown in Figure 9.

The transmitted files end with an RSA-2048 sig-
nature of the MD5 hash of the plaintext data, and
are encrypted with an RC4 layer using a hardcoded
key on top of an XOR encryption layer. Zeus only
applies binary or configuration updates with ver-
sion numbers strictly higher than its current version
number. This means that it is not possible to make
Zeus bots revert to older versions.

TCP data transfers start with a message header
of type 0x64 for a binary update, or 0x66 for a con-
figuration update, followed by the RC4 encrypted
data. TCP data transfers are terminated by a mes-
sage containing only a little-endian integer with the
value 1 (no header).

0 31

data block ID (4 bytes)

data
...

Figure 9: Data reply payload (length varies).

3.4.7 Proxy reply (type 0x06)

Proxy replies return proxies in response to version
requests with piggybacked proxy request markers.
A proxy reply can contain up to 4 proxies, each of
which is RSA-2048 signed.

0 63

IP type (4 bytes)

proxy ID (20 bytes)

IPv4 addr (4 bytes) IPv4 port
(2B)

IPv6 addr (16 bytes)

IPv6 port
(2B)

RSA signature (256 bytes)
...

Figure 10: Proxy struct (304 bytes).

Each proxy entry is formatted as shown in Fig-
ure 10. The format is similar to that used in peer
list replies, except that the IP type field is 4 bytes

6



long instead of 1 byte, and there is an RSA signa-
ture at the end of each proxy entry.

3.4.8 Proxy announcement (type 0x32)

Proxy announcements are similar to proxy replies,
but are actively pushed through the Zeus network
and are not sent in response to any message. When
a bot is appointed as a proxy by the botmasters, it
pushes a proxy announcement to all its neighbors
to announce that it is now a proxy.

Proxy announcements utilize the TTL field in
the Zeus header (see Section 3.3). The TTL field
has an initial value of 4 for proxy announcements.
In turn, each Zeus peer which receives a proxy an-
nouncement decrements the time to live value and
forwards the announcement to each of its neigh-
bors. This way, proxy announcements propagate
very rapidly through the network, although they
cannot reach NATed bots directly.

A proxy announcement contains a single proxy
entry of the same format used in type 0x06 mes-
sages, as shown in Figure 10.

3.4.9 C2 message (type 0xCC)

Unlike most message types, C2 messages are only
exchanged between harvester bots and proxies, and
are exchanged over TCP. C2 messages are used as
wrappers for HTTP messages, and are encrypted
with RC4 using the identifier of the receiving bot
as the key. Because C2 messages wrap HTTP mes-
sages, we suspect that the communication between
proxy bots and the C2 proxy layer is HTTP-based.
The HTTP-based C2 protocol is virtually identical
to the C2 protocol used in centralized Zeus [3, 5].

An example C2 HTTP header for a command re-
quest is shown in Figure 11. The X-ID field specifies
the sub-botnet for which a command is requested.

POST /write HTTP/1.1

Host: default

Accept-Encoding:

Connection: close

Content-Length: 400

X-ID: 100

Figure 11: C2 HTTP header.

After the HTTP header comes an HTTP pay-
load, which consists of several, optionally zlib-
compressed, data fields. The payload begins with
a header specifying the payload size and flags, and
the number of data fields that follow. The payload
header ends with an MD5 hash of the combined
data fields, used to verify message integrity.

Each data field starts with a data header speci-
fying the field type, flags, and compressed and un-

compressed sizes. After the header comes the ac-
tual data, the structure of which is dependent on
the type of data field. Each data field is encrypted
with an XOR encryption.

C2 request messages typically contain several
status and information fields about the request-
ing bot. Typical fields included in C2 requests are
shown in Table 1. Note that the type numbers of
data fields are completely independent from Zeus
message type numbers.

type content
0x65 system name and volume ID
0x66 bot identifier
0x67 infecting spam campaign
0x6b system timing information
0x77 stolen data

Table 1: Typical C2 request fields.

The most important data field contained in a
C2 response is the command field, which has type
0x01. It contains an MD5 hash used to verify in-
tegrity of the command, followed by the command
itself in the form of an ASCII-string. Several exam-
ple command strings are listed in Table 2.

name meaning
user execute execute file at URL
user certs get steal crypto certificates
user cookies get steal cookies
ddos url DDoS a given URL
user homepage set set homepage to URL

Table 2: Example C2 command strings.

3.5 Communication Patterns

The previous sections have described the format
and purpose of the Zeus message types. We now
briefly clarify how these message types fit together
and how Zeus bots typically behave. Zeus bots
run a passive thread, which listens for incoming re-
quests, as well as an active thread, which periodi-
cally generates requests to keep the bot up-to-date
and well-connected. We describe the behavior of
each of these threads in turn.

3.5.1 Passive thread

Every Zeus bot listens for incoming messages from
other bots in its passive thread. A Zeus bot receiv-
ing an incoming request will handle this request to
the best of its abilities, and attempt to send back
an appropriate reply, as described in Section 3.4.

The sender of any successfully handled request
is considered for addition to the receiving bot’s peer

7



list. This is the main mechanism used by externally

reachable Zeus bots to learn about neighbors, and
it is also how new bots introduce themselves to the
network. If the receiving bot has fewer than 50
neighbors, then it always adds the sender of the re-
quest to its peer list. Additionally, if the identifier
of the sender is already present in the peer list, then
the corresponding IP address and port are updated.
This is done to accommodate senders with dynamic
IPs and discard stale dynamic IPs. If the identifier
of the sender is not yet known, but the peer list al-
ready contains 50 peers or more, then the sending
peer is stored in a queue of peers to be considered
for addition during the next neighbor verification
round (see Section 3.5.2).

Before adding a new peer to the peer list, a num-
ber of sanity checks are performed. First, only peers
which have a source port in the expected range are
accepted. NATed bots may make it into the peer
lists of other bots, if they happen to choose a port
in the valid range. Additionally, only one IP per
/20 subnet may occur in a bot’s peer list at once.
If a potential new peer’s IP is in a /20 subnet al-
ready represented in the peer list, it is not accepted.
Recent versions of Zeus also include an automatic
blacklisting mechanism, where each bot blacklists
IPs that contact it too frequently in a specific (hard-
coded) time window.

Most incoming messages are requests from other
peers, and are handled by sending back the appro-
priate reply type. Type 0x32 proxy announcements
are the exception. When a type 0x32 message ar-
rives, its signature is checked for validity. If the
message passes the check, the time to live field is
decremented and the message is forwarded to all
known neighbors if the time to live is still positive.

Furthermore, new proxies which pass verifica-
tion are considered for addition to the receiving
bot’s proxy list. The proxy list is similar to the
peer list, but is maintained separately. If the iden-
tifier of the new proxy is already in the proxy list,
then the corresponding IP address and port are up-
dated. Otherwise, if a proxy list entry over 100
minutes older than the new proxy is found, this en-
try is overwritten with the new proxy (this is not
done for type 0x06 proxy replies). In any other case,
the new proxy is added to the end of the proxy list.
Finally, the proxy list is truncated to its maximum
length of 10 entries, effectively discarding the new
proxy if the proxy list was already 10 entries long.
It is worth noting that a Zeus bot will never add
itself to its proxy list, even if it receives itself in a
proxy announcement.

3.5.2 Active thread

The Zeus active communication pattern consists of
a large loop which repeats every 30 minutes. The
function of the active communication loop is to keep

Zeus itself, as well as the peer list and proxy list,
up to date.

In each iteration of the loop, Zeus queries each
of its neighbors for their binary and configuration
file versions. This step serves to keep the bot up to
date, and to check each neighbor for responsiveness.
Also, if Zeus knows fewer than 4 proxies, it piggy-
backs a proxy request marker with each version re-
quest. Each peer is given 5 chances to respond to
a version request. If a peer fails to answer within
the maximum number of retries, Zeus checks if it
has working Internet access by attempting to con-
tact www.google.com or www.bing.com. If it does,
the unresponsive peer is discarded. Else, Zeus stops
attempting to probe the current peer. If the peer
responded and is found to have an update available,
the update is downloaded in a separate thread.

After version querying all peers in its peer list,
Zeus proceeds to handle any pending peers which
were queued from incoming requests (see Section
3.5.1). Pending peers are only handled if the peer
list contains fewer than 50 peers, and is stopped as
soon as the peer list reaches length 50. Each pend-
ing peer under consideration is sent a single version
request, and is added to the peer list if it responds.

Finally, if the peer list contains fewer than 25
peers, the bot will actively send peer list requests
to each of its neighbors until the peer list reaches
a maximum size of 150 peers. This is only done
once every 6 loop cycles (3 hours), and is an emer-
gency measure to prevent the bot from becoming
isolated. If, despite this effort, a bot does find itself
isolated, it will attempt to recover by contacting its
hardcoded bootstrap peer list. If this also fails, the
bot will enter DGA mode, as further described in
Section 4.

4 Domain Name Generation

Algorithm

As mentioned in Section 3.1, Zeus contains a Do-
main Generation Algorithm (DGA), which is acti-
vated if a bot cannot reach any peers, or the bot
cannot fetch updates for a week. Zeus uses the
DGA-generated domains to download fresh RSA-
2048 signed peer lists, and (in some variants) ex-
change C2 traffic. This section describes the Zeus
Domain Generation Algorithm.

4.1 Algorithm Details

The Zeus Domain Generation Algorithm generates
1000 unique domain names per week. A bot wish-
ing to use the DGA channel starts at a random
position in the list of domain names for the current
week and sequentially tries all domain names un-
til it finds a domain which is responsive. Generated

8



1 for(i = 0; i < 1000; i++) {

2 /* S is a byte array and year, date, month are numeric */

3 S[0] = (year + 48) % 256; S[1] = month;

4 S[2] = 7 * (day / 7); S[3] = i;

5 hash = md5(S);

6

7 /* convert hash to URL domain name */

8 name = "";

9 for(j = 0; j < len(hash); j++) {

10 c1 = (hash[j] & 0x1F) + ’a’;

11 c2 = (hash[j] / 8) + ’a’;

12 i f (c1 != c2) {

13 i f (c1 <= ’z’) name += c1;

14 i f (c2 <= ’z’) name += c2;

15 }

16 }

17

18 /* select TLD for domain */

19 name += ".";

20 i f (i % 6 == 0) {

21 name += "ru";

22 } else i f (i % 5 != 0) {

23 i f (i & 0x03 == 0) {

24 name += "info";

25 } else i f (i % 3 != 0) {

26 i f ((i % 256) & 0x01 != 0) name += "com";

27 else name += "net";

28 } else {

29 name += "org";

30 }

31 } else {

32 name += "biz";

33 }

34

35 domains[i] = name;

36 }

Figure 12: The P2P Zeus Domain Name Generation Algorithm.

domain names use top-level domains taken from the
set {biz, com, info, net, org, ru}. The Zeus DGA
bears some resemblance to the DGA used in Muro-
fet (Murofet is a malware known to be related to
centralized Zeus) [6].

The Zeus DGA is shown in C-like pseudocode in
Figure 12. The code shown generates all 1000 do-
mains for a given week. The generation of a domain
name starts by taking the MD5 hash over the con-
catenation of (transformations of) the year, month,
day, and domain index. As can be seen in lines 9 –
16, the MD5 hash is then used to generate a domain
name which contains a variable number of charac-
ters between “a” and “z”. Zeus domain names are
thus variable-length strings containing at most 32
characters (excluding the top-level domain), all of
which are lowercase letters. Finally, the domain is
completed by selecting one of the six top-level do-
mains and concatenating it to the domain name.

5 Conclusion

P2P Zeus is a significant evolution of earlier Zeus
variants. Compared to traditional centralized ver-
sions of Zeus, P2P Zeus appears to be much more

resilient against takedown and infiltration attempts.
Potential countermeasures against P2P Zeus are
complicated by its application of RSA-2048 to mis-
sion critical messages. The network’s resilience is
further increased by its use of a Domain Genera-
tion Algorithm backup channel, and (automatic)
blacklisting and IP-restriction mechanisms. Fur-
thermore, infiltration is complicated by the Zeus
message encryption mechanism, which makes the
use of randomized bot identifiers impossible in the
general case.

6 Acknowledgements

We would like to thank Tillmann Werner and
Christian Rossow for the collaboration on revers-
ing the Zeus P2P protocol. We also thank Daniel
Plohmann for his work on the Domain Genera-
tion Algorithm, Brett Stone-Gross for his work
on the configuration file and C2 message formats,
and Tomasz Bukowski and Christian J. Dietrich for
their insights. This work was supported by the Eu-
ropean Research Council Starting Grant “Rosetta”
and the EU FP7-ICT-257007 SysSec project.

9



References
[1] Zeus Tracker. https://zeustracker.abuse.ch/.

[2] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou,
S. Abu-Nimeh, W. Lee, and D. Dagon. From Throw-Away
Traffic to Bots: Detecting the Rise of DGA-Based Malware.
In Proceedings of the 21st USENIX Security Symposium,
Bellevue, WA, USA, 2012.

[3] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha,
A. Youssef, M. Debbabi, and L. Wang. On the Analysis of
the Zeus Botnet Crimeware Toolkit. In Proceedings of the
8th Annual Conference on Privacy, Security and Trust,
Ottawa, Ontario, Canada, August 2010.

[4] CERT.pl. Zeus P2P Monitoring and Analysis, 2013. Tech-
nical Report. http://www.cert.pl/PDF/2013-06-p2p-rap_en.
pdf.

[5] N. Falliere and E. Chien. Zeus: King of the Bots, 2009.
Technical Report, Symantec.

[6] K. Itabashi. How Trojan.Zbot.B!inf Uses the Crypto API,
2010. Technical Report, Symantec. http://www.symantec.
com/connect/blogs/how-trojanzbotbinf-uses-crypto-api.

[7] A. Lelli. Zeusbot/Spyeye P2P Updated, Fortifying the
Botnet, February 2012. Technical Report, Symantec.
http://www.symantec.com/connect/blogs/zeusbotspyeye-
p2p-updated-fortifying-botnet.

[8] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-
Peer Information System Based on the XOR Metric. In
Revised Papers from the 1st International Workshop on
Peer-to-Peer Systems, 2002.

[9] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross,
D. Plohmann, C. Dietrich, and H. Bos. P2PWNED: Model-
ing and Evaluating the Resilience of Peer-to-Peer Botnets.
In Proceedings of the 34th IEEE Symposium on Security
and Privacy, San Francisco, CA, USA, May 2013.

[10] B. Stone-Gross. The Lifecycle of Peer-to-Peer (GameOver)
Zeus, July 2012. Technical Report, Dell SecureWorks.
http://www.secureworks.com/cyber-threat-intelligence/
threats/The_Lifecycle_of_Peer_to_Peer_Gameover_ZeuS/.

[11] abuse.ch. Zeus Gets More Sophisticated Using P2P Tech-
niques, 2011. Technical Report. http://www.abuse.ch/?p=
3499.

[12] J. Wyke. What is Zeus?, 2011. Technical Report, Sophos.

10

https://zeustracker.abuse.ch/
http://www.cert.pl/PDF/2013-06-p2p-rap_en.pdf
http://www.cert.pl/PDF/2013-06-p2p-rap_en.pdf
http://www.symantec.com/connect/blogs/how-trojanzbotbinf-uses-crypto-api
http://www.symantec.com/connect/blogs/how-trojanzbotbinf-uses-crypto-api
http://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
http://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
http://www.secureworks.com/cyber-threat-intelligence/threats/The_Lifecycle_of_Peer_to_Peer_Gameover_ZeuS/
http://www.secureworks.com/cyber-threat-intelligence/threats/The_Lifecycle_of_Peer_to_Peer_Gameover_ZeuS/
abuse.ch
http://www.abuse.ch/?p=3499
http://www.abuse.ch/?p=3499

	Introduction
	Network Topology
	P2P Protocol
	Overview
	Encryption
	Message Structure
	rnd (random)
	TTL (time to live)
	LOP (length of padding)
	type
	session ID
	source ID
	payload
	padding

	Payload Structure
	Version request (type 0x00)
	Version reply (type 0x01)
	Peer list request (type 0x02)
	Peer list reply (type 0x03)
	Data request (type 0x04/0x68/0x6A)
	Data reply (type 0x05/0x64/0x66)
	Proxy reply (type 0x06)
	Proxy announcement (type 0x32)
	C2 message (type 0xCC)

	Communication Patterns
	Passive thread
	Active thread


	Domain Name Generation Algorithm
	Algorithm Details

	Conclusion
	Acknowledgements

