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Abstract—Properly benchmarking a system is a difficult and
intricate task. Even a seemingly innocuous mistake can compro-
mise the guarantees provided by a systems security defense and
threaten reproducibility and comparability. Moreover, as many
modern defenses trade security for performance, the damage
caused by benchmarking mistakes is increasingly worrying. To
analyze the magnitude of the phenomenon, we identify 22
benchmarking flaws that threaten the validity of systems security
evaluations, and survey 50 defense papers published in top venues.
We show that benchmarking flaws are widespread even in papers
published at tier-1 venues; tier-1 papers contain an average of
five benchmarking flaws and we find only a single paper in our
sample without any benchmarking flaws. Moreover, the scale
of the problem appears constant over time, suggesting that the
community is not yet taking sufficient countermeasures. This
threatens the scientific process, which relies on reproducibility
and comparability to ensure that published research advances
the state of the art. We hope to raise awareness and provide
recommendations for improving benchmarking quality and safe-
guard the scientific process in our community.

Index Terms—benchmarking, computer systems, security

I. INTRODUCTION

Benchmarking is essential in systems security—to compare
different solutions and reproduce prior results. At every
program committee meeting for every top venue in our field,
heated discussions revolve around the question whether the
performance numbers reported in papers X and Y are reliable
and how they relate to each other. Making the wrong call
is bad, as nobody wants to accept or reject papers for the
wrong reasons. And after we accept a paper, we want to be
able to reproduce and compare the results in a meaningful
way. In this paper, we survey publications from top security
conferences to determine whether they contain benchmarking
flaws that threaten the validity of their results. As we do not
allege intent, we use the term benchmarking flaws instead of
the (tongue in cheek) term “benchmarking crimes” used earlier
in the literature, including Heiser’s web page [1] that provides
the basis for the flaws/crimes we study.

Bluntly speaking, benchmarking flaws threaten the validity
of the research results in publications. The obvious question
then is: how safe are we as a community from this threat? And
if we are not safe, how serious is this threat, and how can we
mitigate it? Phrased differently, we want to know how well
the systems security research community detects anomalies in
benchmarking in evaluation sections of papers published in
tier-1 venues, what the consequences are of false negatives,
and how to fix these “vulnerabilities”.
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In the community, there is wide agreement that performance
benchmarks are important to advance the field [2]. In systems,
almost all security mechanisms incur some performance
overhead [3]. The aim is to keep the overhead as low as
possible, while raising the bar for attackers as high as possible.
Given an unlimited performance budget, techniques to build
secure systems under common threat models are already well-
established—memory safety being a typical example [4], [5].
As a result, much modern systems security research focuses
on practical defenses (such as control-flow integrity [6] or
randomization [7]), that trade off some security to achieve
realistic performance guarantees.

Given these constraints, performance benchmarking is in-
creasingly important in systems security. Proper benchmarks
allow us to compare different solutions and reproduce research
results. Improper benchmarking, on the other hand, may set
unrealistic standards and hamper progress in the area.

In this paper, we take a closer look at benchmarking
flaws in systems security. While it would be good to also
benchmark the security of a solution, doing so in an unbiased
way is much harder [8] and this paper primarily focuses on
performance benchmarking of defenses (expanding on other
dimensions when appropriate). After discussing the objectives
of performance benchmarking in general, we carefully explore
all the pitfalls that authors may encounter when assessing
the performance of their research artefact. For each of these
benchmarking flaws, we explain the negative impact they may
have on the validity or usefulness of the evaluation.

Finally, we assess the state of benchmarking in systems
security. We selected systems defense papers from USENIX
Security, the leading conference in systems security, but also
from the other tier-1 computer security venues where systems
security defenses are routinely published (Security & Privacy,
CCS, and NDSS). We sifted through some 50 papers and
analyzed them for benchmarking flaws. For this purpose, we
selected all defense papers with benchmarking results published
in 2010 and 2015. As nearly all papers in our data set have at
least some benchmarking issue (and many have several) and
we found no clear difference between the more recent and the
older papers, we conclude that improper benchmarking is a
serious threat with little improvement in recent years. Moreover,
our analysis shows that more and more papers are affected
over time, confirming the increasing relevance of benchmarking
flaws in our community.

It is explicitly not our intention to point fingers. As
mentioned, all of the papers that we investigated exhibited



some flaws and we freely admit that some of our own past
papers are no exception. The point that we want to make is
that the problem is not with individual papers, but with the
field. While we acknowledge that following all the guidelines
is difficult and sometimes impossible under time pressure, we
found that for many common and serious flaws the extra effort
is very low and our goal is to formulate specific guidelines
moving forward for the systems security community. Moreover,
by having concrete guidelines for benchmarking, it is possible
to build automatic tools that set up and run benchmarks in
such a way as to avoid benchmarking flaws. We believe this
is a promising area for future work.

As for the cause of the flaws we encountered, we can
only speculate. Informal discussions at PC meetings frequently
blame the pressure to publish in good venues that lead authors
to cut corners. The reasoning is as follows. All defense solutions
in systems security represent a tradeoff between security
and performance. As a result, researchers frantically try to
minimize the performance overhead, while not compromising
the security—sometimes doing whatever it takes to stay under
(fairly arbitrary) thresholds. For example: “The instrumentation
overhead should be under 5%” [9]. We do not deny such
pressure exists, but we have found no evidence of deliberate
cheating. We believe that most, if not all, benchmarking flaws
we found are unintentional and just denote insufficient attention
devoted to performance benchmarking in our community. As
mentioned earlier, many prevalent benchmarking flaws we
found can, in fact, be prevented altogether with little effort and
simple benchmarking practices. Our goal is to raise awareness
of this increasingly important issue and foster high-quality
benchmarking to improve reproducibility and comparability of
research in our community.

Contributions

• We raise awareness of a number of common pitfalls that
affect the validity of benchmarking results in systems
security. We report on 22 common benchmarking flaws.

• Our survey of defense papers in top security venues
demonstrates the impact of benchmarking flaws in the
systems security community.

• We propose best practices to reduce (the impact of)
improper benchmarking.

II. BENCHMARKING FLAWS

Almost every paper in computer systems requires an evalua-
tion that determines whether and how well the presented system
achieves its goals. One important purpose of the evaluation is
to compare against other work: it should show that the system
improves the state of the art in some way and allow possible
later papers to show that they improve this system. To allow for
comparison, an evaluation must meet a number of requirements.
First of all, it should be complete in the sense that it verifies
all claimed contributions of the system and shows the extent
of any negative impact the system may have. All the presented
results must be relevant in the sense that they actually tell
the reader something meaningful about the system. Another

important characteristic is soundness, the requirement that all
numbers measure what is intended with reasonable accuracy
and repeatability. Finally, a general principle of science, requires
papers to be reproducible. That is, the information provided
in the paper should be sufficient to allow others to build the
system and perform its evaluation in the same way as the
original. A good paper should meet all these requirements, but
unfortunately experience shows that this is often hard to come
by in practice. Indeed, we found that most papers contain a
number of benchmarking flaws that violate these properties.

In this section, we describe the benchmarking flaws we
identified and explain their importance. Our list is based in
large part on a web page by Heiser [1] (who uses the term
benchmarking crimes), aimed at operating systems researchers.
We adapt the list to the context of security research, and
also perform a systematic and large-scale survey of systems
defense papers at top conferences (see Section IV) to determine
whether these benchmarking flaws are common in published
systems security papers. We find that these flaws apply not
only to the operating systems community, but extend to other
subfields of computer systems, in particular systems security.
This is particularly important because, as we shall see, Heiser’s
original web page [1] published in 2010 had insufficient impact
in the systems security community. Benchmarking flaws are
still widespread and their relevance has, in fact, grown over
time.

We placed the 22 benchmarking flaws we identified in groups
and assigned codes (a letter for the group plus a number for
the specific flaw) to simplify later references to them. We
summarize the identified benchmarking flaws and their impact
in Table I. While many flaws impact multiple requirements, we
merely show the most affected ones. We describe the groups and
the individual benchmarking flaws in the following subsections
and later elaborate on their impact in Section IV.

A. Selective benchmarking

There is no single number that can fully express how well a
system performs. Performance overhead is multidimensional as
different operations are affected in different ways. For example,
a system that performs CFI [6] instruments indirect branches
but leaves other operations alone. Therefore, it is likely to
incur substantial overhead for programs and workloads that
perform many function calls, especially if they are indirect (e.g.,
common C++ programs), but it will incur minimal overhead
if the program spends most of its time in a loop that calls no
functions. This has several implications for benchmarking, and
when a paper does not consider these implications it might
result in a performance evaluation becoming anywhere from
slightly inaccurate to completely meaningless.

The first implication is that we should always include
benchmarks that evaluate all operations whose performance one
might reasonably expect to be impacted. If a system improves
one kind of workload compared to the state of the art but
slows down another, it is important to show this to uncover
tradeoffs and allow readers to decide whether this solution
is actually faster overall. If a paper does not include such



TABLE I
BENCHMARKING FLAWS AND THEIR IMPACT;  =HIGH-IMPACT FLAW, #=OTHER FLAW (INDICATING ONLY THE most AFFECTED REQUIREMENTS).

Completeness Relevancy Soundness Reproducibility
A1 Not evaluating potential performance degradation  
A2 Benchmark subsetting without proper justification # #
A3 Selective data sets that hide deficiencies #
B1 Microbenchmarks representing overall performance #
B2 Throughput degraded by x% ⇒ overhead is x%  
B3 Bad math #
B4 No indication of significance of data #
B5 Incorrect averaging across benchmark scores #
C1 Benchmarking of simplified simulated system  
C2 Inappropriate and misleading benchmarks  
C3 Same dataset for calibration and validation #
D1 No proper baseline  
D2 Only evaluate against yourself #
D3 Unfair benchmarking of competitors  
E1 Not all contributions evaluated  
E2 Only measure run-time overhead #
E3 False positives/negatives not tested #
E4 Elements of solution not tested incrementally #
F1 Missing platform specification #
F2 Missing software versions #
F3 Subbenchmarks not listed  
F4 Relative numbers only #

benchmarks, it results in benchmarking flaw A1: not evaluating
potential performance degradation. A typical example would
be a system that instruments some system calls in the kernel
(potentially slowing them down) but runs only workloads that
primarily perform user-mode computations. In this case, the
benchmarking results would be meaningless and would not
allow the reader to determine whether the system is practical
or how it compares to related work. This flaw results in a lack
of completeness.

Another implication is that, whenever a paper summarizes
performance as a single number, it must take care to ensure
this number is representative of real-world workloads. A
number of benchmarking suites, such as SPEC CPU2006 [10],
have been created for this purpose. Different subbenchmarks
stress different types of operations and therefore result in
different overhead numbers. Any paper which arbitrarily selects
a subset of benchmarks and presents it as a single overall
performance overhead number as if it is still representative
contains benchmarking flaw A2: benchmark subsetting without
proper justification. If the missing subbenchmarks happen to
be those that incur most overhead, the overall performance
number will be meaningless because important components
are missing (lack of completeness) and misleads the reader
into thinking the system performs better than it actually does
(lack of relevance). A typical example would be a system
that instruments memory management operations (potentially
slowing them down) and omits the memory-intensive perlbench
from SPEC CPU2006 [10]. This problem is not limited to
performance benchmarks; a subset arbitrarily selected from a
large set of tests is unlikely to be representative of the full
set regardless of whether they benchmark performance or, for
example, vulnerabilities that the system attempts to mitigate.

Finally, benchmark configurations are often flexible and
allow performance to be measured in different settings. A
typical example would be the number of concurrent connections

for a server program. Since this configuration parameter is
likely to affect overhead, it is important to measure a range of
concurrency settings. Papers that fail to test performance over
an appropriate range of settings contain benchmarking flaw
A3: selective data sets that hide deficiencies. For example,
if throughput seems to scale linearly with the number of
concurrent connections, it suggests that the range of this
variable is too restricted because the system cannot keep this
up forever. Like the other two flaws in this group, it potentially
results in numbers that do not accurately reflect the performance
impact of the system (lack of completeness).

B. Improper handling of benchmark results

Our second group is about correctly interpreting bench-
marking results. Even when running the right benchmarks,
the presentation of their results can be misleading if they are
processed in incorrect ways. This group contains five flaws
related to incorrect handling of benchmark results.

Microbenchmarks measure the performance of specific
operations. Such benchmarks can help determine whether a
system succeeds in speeding up these particular operations,
as well as for drilling down on performance issues. However,
they are not an indication of how fast the system would run in
practice. For this purpose, more realistic system benchmarks
are needed. Misrepresenting the results of microbenchmarks
is classified as B1: microbenchmarks representing overall
performance and threatens relevance because the presented
results are misleading.

Benchmarks usually run either a fixed workload to measure
its runtime or repeat operations for a fixed amount of time
to measure throughput. One common mistake is for papers to
consider the increase in runtime or decrease in throughput to
be the overhead. However, for many workloads the CPU is
idle some of the time, for example waiting for I/O. If the CPU
is working while it would otherwise have been waiting, this



masks some of the overhead because it reduces the CPU time
potentially available for other jobs. A typical example would
be a lightly loaded server program (e.g., at 10% CPU) that
reports no throughput degradation when heavily instrumented,
given that the spare CPU cycles can be spent on running
instrumentation code (at the expense of extra CPU load).
Ignoring this results in B2: throughput degraded by x% ⇒
overhead is x%. One way to avoid this flaw is to ensure the CPU
is fully loaded by running a sufficient number of concurrent
jobs. Alternatively, the change in CPU load must be taken
into account, e.g. by quoting the cost of processing a certain
amount of data. When a paper contains this flaw, it threatens
the soundness of the results and almost certainly results in the
presented overhead being lower than the actual overhead.

B3: bad math refers to incorrect computations with overhead
numbers. Examples include the use of percentage points to
present a difference in overhead, such as the case where
the difference between 10% overhead and 20% overhead is
presented as 10% more overhead, while it is actually 100%
more (i.e., 2×). Another example is incorrectly computing
slowdown, for example presenting a runtime that changes from
5s to 20s as a 75% slowdown (1 − 5

20 ) rather than a 300%
slowdown (205 − 1). In all such cases, this flaw results in
presenting numbers that are incorrect and therefore unsound.

When measuring runtimes or throughput numbers, there
is always random variation due to measurement error. Large
measurement errors suggest a problem with the experimental
setup. Therefore, we consider the lack of some indication of
variance, such as a standard deviation or significance test to be
benchmarking flaw B4: No indication of significance of data.
We classify this as a lack of completeness because without
knowing the amount of variation one cannot tell what the
measured results really mean.

Papers that use benchmarking suites generally present a
single overall overhead figure representing average overhead.
Some authors use the arithmetic mean to summarize such
numbers. However, this is inappropriate because the arithmetic
mean over a number of ratios depends on which setup is
chosen as a baseline [11] and is therefore not a reliable metric.
Only the geometric mean is appropriate for averaging overhead
ratios. Papers that use the arithmetic mean (or other averaging
strategies such as using the median) contain benchmarking
flaw B5: incorrect averaging across benchmark scores. This
benchmarking flaw threatens soundness because it results in
reporting incorrect overall overhead numbers.

C. Using the wrong benchmarks

The next group of benchmarking flaws is about using the
wrong benchmarks. It consists of three benchmarking flaws.
C1: benchmarking of simplified simulated system refers to
cases where the benchmarks are not run on a real system but
rather an emulated version, for example through virtualization.
While it is sometimes necessary to emulate a system if it is not
available otherwise, it is best avoided because the characteristics
of the emulated system are generally not identical to those
of the real system. This results in unsound measurements

that do not reflect the intended system. The second is C2:
inappropriate and misleading benchmarks, which refers to
the use of benchmarks that are not suitable to measure the
expected overheads. For example, it would be inappropriate to
use a workload that mostly performs user-space computations
if overhead is expected only on system calls in the kernel.
Presenting the results from inappropriate benchmarks misleads
the reader and therefore violates the property of relevance.
Finally, papers contain C3: same dataset for calibration and
validation when they benchmark their system using the same
data set that they used to train it or, more generally, if there
is any overlap between the training and test sets. A typical
example would be profile-guided approaches which optimize
for a specific workload and then use (parts of) that same
workload to demonstrate the performance of the technique.
The results from this approach lack relevance because they
mislead the reader into believing the system performs better
than it actually would in realistic scenarios.

D. Improper comparison of benchmarking results

Raw measurements like runtime or throughput numbers
are rarely meaningful in isolation. Instead, they get meaning
by comparing them to a baseline to determine how much
overhead the system incurs and/or to competing systems to
determine whether the system can improve their performance.
We separated this issue into three different benchmarking flaws.
D1: no proper baseline refers to computing overhead compared
to an unsuitable baseline. In systems defenses, the proper
baseline is usually the original system using default settings
with no defenses enabled. If the baseline is modified, for
example by adding part of the requirements for the system being
evaluated (such as specific compiler flags or virtualization),
this misleads the reader by hiding some of the overhead in the
baseline and therefore violates the relevance requirement. D2:
only evaluate against yourself refers to cases where papers
compare their new system to their own earlier work rather than
the state of the art. If better solutions are available, they should
be included in the comparison so as to not mislead the reader.
In this case, the comparison is not relevant. Finally, D3: unfair
benchmarking of competitors refers to papers that do compare
against competitors but do so in an unfair way. For example,
they might use a configuration that is not optimal. Again, this
misleads the reader into thinking the presented system is better
than it is, violating relevance.

E. Benchmarking omissions

This group covers necessary measurements for evaluations
that are not yet covered by the other benchmarking flaws.

E1: not all contributions evaluated refers to cases where a
paper claims to achieve a certain goal, but does not empirically
determine whether this goal has been reached. It is critical that
papers verify claims for the progress of science, since incorrect
claims may prevent later work that does make the contributions
from being published. This flaw violates completeness.

When evaluating their performance, many papers measure
run-time overhead. However, there are often other types of



overhead that are also relevant for performance. A typical
example would be memory overhead. Memory is a limited
resource, so applications with high memory usage can slow
down other processes running on the same system. Since
most defenses need to use memory for bookkeeping, it is
important to measure memory consumption. A paper contains
benchmarking flaw E2: only measure run-time overhead and
its evaluation is incomplete whenever it does not measure
important performance characteristics.

Many systems defenses monitor behavior to determine
whether it is benign or could be malicious, which is usually
impossible to do with certainty. Unless it is obvious that the
system can never get it wrong (e.g., security enforcement
based on conservative program analysis), the evaluation needs
to quantify such failures; omission of this assessment results
in benchmarking flaw E3: false positives/negatives not tested.
Without knowing how accurate the system is, it is impossible
to judge its value, making the paper incomplete.

Many systems consist of multiple components or steps
that can to some extent be used independently. For example,
an instrumentation-based system might use static analysis
to eliminate irrelevant instrumentation points and improve
performance. Such optimizations are optional as they do not
affect functionality and can greatly increase complexity, so
it is best to only include them if they result in substantial
performance gains. Papers that do not measure the impact of
such optional components individually contain benchmarking
flaw E4: elements of solution not tested incrementally and
its evaluation lacks completeness. Note that, while the
baseline also involves comparing against different levels of
instrumentation, this flaw differs from D1 (no proper baseline).
In particular, in a paper that contains D1 but not E4, the
reported numbers are incorrect but the reader would at least
be able to reconstruct the correct numbers if they are aware
of the problem with the baseline. In a paper that contains
E4 but not D1, the reported numbers are correct but not all
contributions (elements of the solution) are individually tested.
This is especially important if the optional components are a
major part of the paper’s contributions. If the system is faster
than the state of the art merely due to a faster implementation
rather than the newly designed optimizations, its novelty is
questionable.

F. Missing information

The final group contains benchmarking flaws where impor-
tant information has been left out of a paper. A paper contains
F1: missing platform specification if it lacks a description
of the hardware setup used to perform the experiments. To
be able to reproduce the results, it is always important to
know what type of CPU was used and how much memory
was available. The cache architecture may be important to
understand some performance effects. Depending on the type of
system being evaluated, other characteristics such as hard drives
and networking setup may also be essential for reproducibility.
The second flaw in this group, F2: missing software versions, is
similar but refers to the software. It is almost always important

to specify the type and version of operating system used, while
other information such as hypervisors or compiler versions is
also commonly needed. Like the previous flaw, such omissions
lead to a lack of reproducibility. Next F3: subbenchmarks not
listed applies to papers that run a benchmarking suite but do
not present the results of the individual subbenchmarks, just
the overall number. This threatens completeness as the results
on subbenchmarks often carry important information about
the strong and the weak points of the system. Moreover, it is
important to know whether the overhead is consistent across
different applications or highly application-specific. Finally,
papers contain F4: relative numbers only if they present
only ratios of overheads (example: system X has half the
overhead of system Y) without presenting the overhead itself
(example: system X incurs 10% overhead). This is a bad flaw
as the most important result is withheld and the reader cannot
perform a sanity check of whether the results seem reasonable,
threatening the evaluation’s completeness. A weaker version
of this practice—presenting overheads compared to a baseline
without presenting absolute runtimes or throughput numbers—
is also undesirable. The absolute numbers are valuable for the
reader to perform a sanity check (is the system configured in
a reasonable way?) and because a slow baseline often means
overhead will be less visible. The practice of omitting absolute
numbers is not harmful enough to consider it a benchmarking
flaw, but we do strongly encourage authors to include absolute
numbers in addition to overheads.

Note that in some cases papers are underspecified to the
extent that it becomes impossible to determine whether the
paper contains a particular flaw or not. These are also cases
of missing information. However, because this is already
considered when discussing the particular type of flaw, the we
do not consider it an F-type flaw to avoid double counting.

III. METHODOLOGY

To determine the prevalence of the benchmarking flaws
discussed in Section II and get a better idea of what these
flaws look like in practice, we performed a survey of 50 papers
published at top security venues. Table II presents an overview
of all the papers selected for our analysis, sorted by year and
title.

Given our focus on systems security, our methodology is
based on the approaches used in prior large-scale surveys
of papers in the area of computer systems [12]–[15]. In this
section, we discuss how we performed the survey. First we
consider how to determine whether a given paper contains
a given flaw, next we discuss how we selected top venues
to survey papers from, and finally we present the sample of
papers that we selected and the rationale behind this selection.

A. Classification methodology

Based on the criteria discussed in Section II, two persons
independently categorized each paper for each flaw as correct,
flawed, underspecified, or not applicable. In most cases, both
readers came to the same conclusions, suggesting that our
methodology is reproducible. For papers where there were



TABLE II
PAPERS SELECTED FOR INCLUSION IN OUR ANALYSIS, SORTED BY YEAR AND TITLE.

venue year authors title
USENIX Sec 2010 Sehr et al. Adapting Software Fault Isolation to Contemporary CPU [. . . ]
USENIX Sec 2010 Ter Louw et al. AdJail: Practical Enforcement of Confidentiality and Integrity [. . . ]
CCS 2010 Lu et al. BLADE: An Attack-Agnostic Approach for Preventing [. . . ]
USENIX Sec 2010 Watson et al. Capsicum: Practical Capabilities for UNIX
USENIX Sec 2010 Akritidis Cling: A Memory Allocator to Mitigate Dangling Pointers
S&P 2010 Meyerovich et al. ConScript: Specifying and Enforcing Fine-Grained Security [. . . ]
CCS 2010 Novark et al. DieHarder: Securing the Heap
S&P 2010 Wang HyperSafe: A Lightweight Approach to Provide Lifetime [. . . ]
CCS 2010 Azab et al. HyperSentry: Enabling Stealthy In-context Measurement of [. . . ]
NDSS 2010 Seo et al. InvisiType: Object-Oriented Security Policies
USENIX Sec 2010 Kim et al. Making Linux Protection Mechanisms Egalitarian with UserFS
S&P 2010 Devriese et al. Non-Interference Through Secure Multi-Execution
CCS 2010 Askarov et al. Predictive Black-box Mitigation of Timing Channels
NDSS 2010 Barth et al. Protecting Browsers from Extension Vulnerabilities
CCS 2010 Cappos et al. Retaining Sandbox Containment Despite Bugs in Privileged [. . . ]
USENIX Sec 2010 Djeric et al. Securing Script-Based Extensibility in Web Browsers
CCS 2015 Lu et al. ASLR-Guard: Stopping Address Space Leakage for Code Reuse [. . . ]
USENIX Sec 2015 Backes et al. Boxify: Full-fledged App Sandboxing for Stock Android
CCS 2015 Mashtizadeh et al. CCFI: Cryptographically Enforced Control Flow Integrity
USENIX Sec 2015 Araujo et al. Compiler-instrumented, Dynamic Secret-Redaction of Legacy [. . . ]
NDSS 2015 Song et al. Exploiting and Protecting Dynamic Code Generation
CCS 2015 Muthukumaran et al. FlowWatcher: Defending against Data Disclosure [. . . ]
NDSS 2015 Younan FreeSentry: protecting against use-after-free [. . . ]
CCS 2015 Tang et al. Heisenbyte: Thwarting Memory Disclosure Attacks using [. . . ]
S&P 2015 Wagner et al. High System-Code Security with Low Overhead
NDSS 2015 Davi et al. Isomeron: Code Randomization Resilient to (Just-In-Time) [. . . ]
CCS 2015 Chudnov et al. Inlined Information Flow Monitoring for JavaScript
CCS 2015 Crane et al. It’s a TRaP: Table Randomization and Protection against [. . . ]
S&P 2015 Zhang et al. Leave Me Alone: App-level Protection Against Runtime [. . . ]
USENIX Sec 2015 Feng et al. LinkDroid: Reducing Unregulated Aggregation of App Usage [. . . ]
NDSS 2015 Mohan er al. Opaque Control-Flow Integrity
CCS 2015 Niu et al. Per-Input Control-Flow Integrity
CCS 2015 Van der Veen et al. Practical Context-Sensitive CFI
NDSS 2015 Lee et al. Preventing Use-after-free with Dangling Pointers Nullification
S&P 2015 Guan et al. Protecting Private Keys against Memory Disclosure Attacks [. . . ]
USENIX Sec 2015 Rane et al. Raccoon: Closing Digital Side-Channels through Obfuscated [. . . ]
S&P 2015 Crane et al. Readactor: Practical Code Randomization Resilient to Memory [. . . ]
NDSS 2015 Jang et al. SeCReT: Secure Channel between Rich Execution Environment [. . . ]
NDSS 2015 Chen et al. StackArmor: Comprehensive Protection From Stack-based [. . . ]
CCS 2015 Soni et al. The SICILIAN Defense: Signature-based Whitelisting of Web [. . . ]
NDSS 2015 Crane et al. Thwarting Cache Side-Channel Attacks Through Dynamic [. . . ]
CCS 2015 Liu et al. Thwarting Memory Disclosure with Efficient [. . . ]
CCS 2015 Bigelow et al. Timely Rerandomization for Mitigating Memory Disclosures
USENIX Sec 2015 Lee et al. Type Casting Verification: Stopping an Emerging Attack Vector
CCS 2015 Xu et al. UCognito: Private Browsing without Tears
S&P 2015 Schuster et al. VC3: Trustworthy Data Analytics in the Cloud using SGX
NDSS 2015 Prakash et al. vfGuard: Strict Protection for Virtual Function Calls in COTS [. . . ]
NDSS 2015 Zhang et al. VTint: Protecting Virtual Function Tables’ Integrity
NDSS 2015 Demetriou et al. What’s in Your Dongle and Bank Account? Mandatory and [. . . ]
USENIX Sec 2015 Weissbacher et al. ZigZag: Automatically Hardening Web Applications Against [. . . ]

some disagreements, the readers discussed their assessments to
converge on a final classification. This was the case for 8 out of
50 papers (16%). In only two cases did the discussion lead to
the addition of a benchmarking flaw initially missed by one of
the readers. Only one of these cases concerned a high-impact
benchmarking flaw. The remaining disagreements concerned
the precise extent of flaws identified by both readers.

We use only information from the papers themselves and
did not contact the authors for explanation. Effectively, we
impose on ourselves the same constraints reviewers face when
deciding whether to accept or reject a paper in a double-blind
submission system. In cases where the papers were unclear
about the procedures that led to the presented results, we
classified that paper/flaw pair as underspecified. This hampers

reproducibility, which is a problem in itself. We discuss this
as a separate possibility in Section IV.

While we anonymized our survey, we do promote repro-
ducibility by including a full overview of all evaluated papers
and the reasoning behind our classification in Appendix A.

B. Selected venues

We focused our analysis on the traditional “top 4” venues
in security: USENIX Security, Security & Privacy, CCS,
and NDSS. While there are many other lower-tier venues
publishing relevant systems security research, the “top 4”
venues are the most influential and de-facto set the standard for
benchmarking practices in the community. For our purposes,
we selected all the relevant papers from these venues in 2010
and 2015. The 2015 sample is useful to study recent trends.



The 2010 sample, in turn, allows us to examine the evolution
of benchmarking flaws over time and the impact of Heiser’s
original benchmarking crimes web page [1] in the systems
security community five years after its publication.

C. Selected papers

From the listed conferences, we selected systems defense
papers given the increasingly strong focus on practical defense
solutions in the community. When evaluating these solutions,
it is crucial to follow adequate benchmarking practices to
demonstrate that the proposed design point in the performance-
security space actually improves the state of the art.

Among many security defense papers, it is important to
clearly delimit which papers are included and which are not to
ensure reproducibility. We want to select a group of papers for
which run-time performance is of particular importance and
which are reasonably comparable among each other. For this
reason, we specifically focus on systems intended to defend
software against attacks at runtime in production settings. For
example we include sandboxing approaches, which can be
used in production to limit the damage an attacker can do, but
exclude taint tracking, which, in modern practical defenses, is
primarily used only for offline analysis. Moreover, we only
consider systems that should be expected to have a potential
run-time performance impact. We consider approaches that
modify existing software rather than building completely new
software, which allows overhead to be computed relative to
the original software baseline.

As expected, the defense papers selected according to our
criteria have a relevant presence in all the “top 4” venues. The
steep increase of papers in 2015 (34 vs. 16 in 2010) stands out,
confirming that the number of practical defense papers and
thus the relevance of benchmarking flaws in our community is
on the rise.

IV. SURVEY RESULTS

For each selected paper listed in Table II and each benchmark-
ing flaw described in Section II, we have determined whether
the paper contains that particular benchmarking flaw. Table III
provides the number of papers containing each flaw split by
year of publication. In this table, we consider only whether
the paper contains the flaw at least once (i.e., papers that
contain the same benchmarking flaw multiple times are counted
once). In some cases, we were unable to determine whether
the methodology in the paper is sound because important
elements of the experiments or their analysis were not specified
with a sufficient level of detail. We have classified these
paper/flaw pairs as underspecified. Note that underspecification
is problematic even if the underlying methodology is sound
as it hampers reproducibility and makes it harder for later
competitors to perform a fair comparison with prior work.

Our results show that benchmarking flaws are a major
problem in both years we investigate. Over all pairs of a paper
and an applicable flaw, the flaw either applies or the paper is
underspecified with regard to the flaw in 77 out of the 255
cases (30%) for 2010 and in 179 out of the 596 cases (30%)

for 2015. However, not all flaws are equally common. The lack
of indication of significance of data and benchmark subsetting
without proper justification are by far the most widespread,
respectively affecting 80% and 69% of the applicable papers
we surveyed. None of the other flaws affect a majority of
the papers, but four additional ones affect 40% or more of
the papers to which they apply. This shows that several types
of benchmarking flaws are widespread even in peer-reviewed
papers at top venues.

There is no clear difference visible between the more recent
and the older papers, confirming that improper benchmarking
is a longstanding problem and that the original web page on
benchmarking flaws published in 2010 [1] did not have a
sufficient impact in the security community. The fraction of
paper/flaw pairs that applies or is underspecified is almost
identical between the years (30% in 2010, 30% in 2015).

For most individual benchmarking flaws we cannot apply
the χ2-test directly because the expected values in some cells
are below 5 [16]. This is mostly due to the fact that there
were relatively few suitable papers published in 2010. In the
cases where the χ2-test does (almost) apply, the differences
between the years are always insignificant. It should be noted
that no conclusion can be drawn from this, as it might still
become significant for larger sample sizes. This is the case
for benchmarking flaws A1, B2, and E2 (see Table III for the
numbering). In the other cases, we apply Yates’ correction
for continuity [16] and find significant differences only for
benchmarking flaw E1 (p = 0.001). The number of papers in
which not all contributions are evaluated (flaw E1) has gone
down significantly over our period of five years, which suggests
that either authors or reviewers have been more careful to
require a complete evaluation. Overall, however, our conclusion
must be that differences over time are minor and, in almost
all cases, statistically insignificant for our sample.

Based on our findings in the survey, we classified some
benchmarking flaws as high-impact to indicate that they are
almost always a major threat to the usefulness of the evaluation
and, with it, the scientific value of the paper. Table I presents
our classification. We discuss the concrete impact for each
individual flaw in Section V. A typical example of a high-
impact flaw is not evaluating all contributions, as unverified
claims cannot be considered true contributions. A typical
example of a flaw that is not high-impact is using the arithmetic
mean to average overhead numbers; while the impact is severe
in specific cases, there are also papers where the difference
is small and therefore does not undermine the value of the
paper. While we recognize any such classification is necessarily
subjective, we did make an effort to reflect our observations
from the survey. We do believe that any high-impact flaw we
listed should be a reason for reviewers to demand the paper
to be revised, while for the other flaws this depends on the
context. Overall, high-impact flaws are somewhat less common
than other flaws. In our sample we found 86 high-impact flaws
out of 346 applicable flaw/paper pairs (25%) and 167 other
flaws out of 505 applicable pairs (33%). A χ2 test shows this
difference to be significant with p < 0.0005.



TABLE III
BENCHMARKING FLAWS SURVEY OVERVIEW.

2010 2015
appl. flawed undersp. appl. flawed undersp.

A1 Not evaluating potential perf. degradation 16 8 (50%) 0 (0%) 34 8 (24%) 1 (3%)
A2 Benchmark subsetting w/o proper justification 9 4 (44%) 0 (0%) 33 24 (73%) 1 (3%)
A3 Selective data sets that hide deficiencies 16 1 (6%) 1 (6%) 32 6 (19%) 0 (0%)
B1 Microbenchmarks representing overall perf. 14 5 (36%) 0 (0%) 10 1 (10%) 0 (0%)
B2 Throughput degr. by x% ⇒ overhead is x% 13 6 (46%) 2 (15%) 30 10 (33%) 0 (0%)
B3 Bad math 16 1 (6%) 1 (6%) 34 8 (24%) 1 (3%)
B4 No indication of significance of data 16 13 (81%) 0 (0%) 34 25 (74%) 2 (6%)
B5 Incorrect averaging across benchmark scores 5 0 (0%) 2 (40%) 24 12 (50%) 0 (0%)
C1 Benchmarking of simplified simulated system 16 2 (13%) 0 (0%) 34 3 (9%) 0 (0%)
C2 Inappropriate and misleading benchmarks 16 0 (0%) 1 (6%) 34 8 (24%) 1 (3%)
C3 Same dataset for calibration and validation 0 0 0 5 1 (20%) 3 (60%)
D1 No proper baseline 16 3 (19%) 0 (0%) 34 9 (26%) 5 (15%)
D2 Only evaluate against yourself 2 0 (0%) 0 (0%) 13 2 (15%) 0 (0%)
D3 Unfair benchmarking of competitors 2 0 (0%) 1 (50%) 13 4 (31%) 1 (8%)
E1 Not all contributions evaluated 16 6 (38%) 0 (0%) 34 0 (0%) 0 (0%)
E2 Only measure run-time overhead 16 6 (38%) 0 (0%) 34 17 (50%) 0 (0%)
E3 False positives/negatives not tested 5 3 (60%) 0 (0%) 14 3 (21%) 0 (0%)
E4 Elements of solution not tested incrementally 5 0 (0%) 0 (0%) 20 4 (20%) 0 (0%)
F1 Missing platform specification 16 4 (25%) 0 (0%) 34 7 (21%) 0 (0%)
F2 Missing software versions 16 5 (31%) 0 (0%) 34 7 (21%) 0 (0%)
F3 Subbenchmarks not listed 8 2 (25%) 0 (0%) 30 5 (17%) 0 (0%)
F4 Relative numbers only 16 0 (0%) 0 (0%) 32 0 (0%) 0 (0%)

Total 255 69 (27%) 8 (3%) 596 162 (27%) 15 (3%)
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Fig. 1. Histogram of number of flaws per paper

Figure 1 shows a histogram of the number of benchmarking
flaws (including underspecification) per paper. It is notable
that from our sample of 50 papers, we found only a single
paper without any benchmarking flaws. Flaws are fairly evenly
spread between papers, with many papers being very close to
the average number of benchmarking flaws per paper (5.0 for
all flaws, 1.7 for high-impact flaws). As such, the results would
seem to suggest that the problem of benchmarking flaws is
not an issue of a few authors and reviewers being particularly
careless (or malicious), but rather a community-wide lack of
awareness of or attention to these problems. This is further
corroborated by the fact that many prevalent benchmarking
flaws require very little effort to fix, as detailed later.

For completeness and to improve transparency, we have
included a detailed discussion and justification of the way we
classified the papers in Appendix A.

V. IMPACT

In this section, we consider the impact of the various
benchmarking flaws based on our findings from the survey we
conducted.

A. Selective benchmarking

a) A1 - Not evaluating potential performance degradation:
We found two major groups of papers that contain this flaw:
those where overhead figures are missing entirely and those that
do not reflect all potential slowdown. In both cases, this flaw
makes it difficult (if not impossible) to assess the practicality of
the presented solution and improvements over the state of the
art. Moreover, papers that present inappropriate performance
measurements may even hamper scientific progress because
they prevent competing systems that perform poorly on these
inappropriate measures or not as efficiently on appropriate
measures from being published. Even worse, they may encour-
age more benchmarking flaws in future systems, as authors
struggle to beat overly optimistic performance figures. As such,
we consider this flaw high-impact.

b) A2 - Benchmark subsetting without proper justification:
We found that many papers that use standardized benchmarking
suites leave out some subbenchmarks. Based on the particular
benchmarks that are often left out, it is very likely that this
will result in an underestimate of performance in practice
(see Appendix A for details). We conclude that leaving out
subbenchmarks can have a major impact on the soundness of
measurements as well as the comparability between competing
systems and therefore requires a proper and explicit justification.
Moreover, if different papers use subsets, the overall slowdown
is no longer suitable for comparing performance. Fortunately,
many of these problems can be solved simply by explicitly
acknowledging that a paper uses a subset of the available



subbenchmarks and detailing the reasoning behind this choice.
Despite the possibly large impact we do not consider this flaw
to be high-impact as there are also cases where the particular
subbenchmarks left out do not seem to introduce a bias.

c) A3 - Selective data sets that hide deficiencies: We
found two types of occurrences of this benchmarking flaw,
with different impacts. Papers with important missing variables
make it hard to estimate how the solution would behave in
practical situations and may hide limitations of the solution’s
performance. Papers which use variables with a restricted
range might result in incorrect extrapolation and again hide
limitations.

B. Improper handling of benchmark results

a) B1 - Microbenchmarks representing overall perfor-
mance: This flaw came in two flavors in our survey: papers
which leave out macrobenchmarks altogether and one paper
that includes both but bases performance claims on microbench-
marks. In both cases this is inappropriate as microbenchmarks
are a poor indicator for real-world performance, resulting in
misleading claims. In the former case it is impossible to
determine how strong this impact is, but in the latter case
the paper suggested a run-time performance that is not realistic
in practice.

b) B2 - Throughput degraded by x% ⇒ overhead is x%:
Based on our survey, we believe that all instances of this
benchmarking flaw are likely to result in an underestimate of
performance overhead, although without the necessary data it
is impossible to determine by how much. Because this flaw is
likely to affect the soundness of performance measurements
in all cases, we consider it to be a high-impact benchmarking
flaw.

c) B3 - Bad math: It is hard to make a general statement
about the impact of bad math as this benchmarking flaw
exists in many different forms. In some papers this leads to
unsound results, some of which systematic underestimations of
overhead, while in other cases the conclusions are misleading.
See Appendix A for details about the specific issues we found.

d) B4 - No indication of significance of data: Some
indication of variation is important because it is an indication
of how reliable the numbers are and whether, given the
measurement inaccuracy, the measured differences are actually
meaningful. However, we expect the overall impact of this flaw
to be relatively mild for papers where researchers set up their
experiments correctly.

e) B5 - Incorrect averaging across benchmark scores: To
determine the impact of incorrect averaging, we computed
the geometric mean based on tables or graphs presenting
the subbenchmark results for papers that should have used it.
Because there is some inaccuracy in deriving numbers from the
graphs, we compared the geometric mean with the arithmetic
mean derived from the same numbers rather than the arithmetic
mean presented in the paper. We were able to do this for eight
papers. For four out of the eight papers, the difference between
the means is less than 1% and as such the impact of using
the incorrect mean is negligible. For the other four papers, the

arithmetic mean is higher than the geometric mean, so they
overestimate overall overhead. In the worst case we found,
the arithmetic mean is more than twice the geometric mean,
while the remainder overestimates overhead by 2% to 16%.
The relative difference between the means is largest in cases
where the overhead is large.

C. Using the wrong benchmarks

a) C1 - Benchmarking of simplified simulated system: For
all papers that contain this benchmarking flaw, benchmarking
a simplified system threatens the accuracy of the reported
numbers and makes it harder to compare against competing
systems that were evaluated under more realistic conditions.
Given that this issue always yields potentially unsound results,
we classified it as high-impact.

b) C2 - Inappropriate and misleading benchmarks: In
all cases we found, the use of inappropriate and misleading
benchmarks is likely to have a major impact on the validity of
the results. This flaw always results in either an underestimate
of overhead or an overestimate of effectiveness in the papers
in our survey. For this reason, we consider this a high-impact
flaw.

c) C3: same dataset for calibration and validation: While
we believe this is a very serious flaw that can have a major
impact, we have found too few papers that it applies to in our
sample to meaningfully judge its impact in practice. However,
we believe that as profile-guiding and machine learning become
more popular, this may become a major issue if authors and
reviewers do not pay sufficient attention to it.

D. Improper comparison of benchmarking results

a) D1 - No proper baseline: With regard to the impact,
we can distinguish two different cases for this flaw: papers that
have an incorrect baseline and papers that do not present one at
all. In our sample, the former group is always likely to either
underestimate overhead or overestimate effectiveness. This
threatens both the soundness and comparability of the results.
Absolute performance numbers with no baseline to compare
against cannot be compared between systems and therefore
provide little meaningful information. Since we found that the
lack of a proper baseline was a serious problem in all cases,
we consider this flaw high-impact.

b) D2 - Only evaluate against yourself: The impact for
this flaw in practice is hard to assess because it would require
gathering the state of the art at the time the paper was submitted
for publication and ensuring their performance numbers are
actually comparable. This process would be highly error-prone
except when done by an expert on the type of system the paper
is about.

c) D3 - Unfair benchmarking of competitors: In all cases
of this benchmarking flaw that we found, the reader is misled
into believing the presented system performs better compared
to the state of the art than it actually does. As such, we consider
this flaw to be high-impact.



E. Benchmarking omissions

a) E1 - Not all contributions evaluated: The impact of
not evaluating claimed contributions is that the design may not
actually work as advertised and future solutions that do achieve
such goals may have a much harder time getting published,
holding back research progress. Given that this risk is present
in all cases we found, this flaw is labeled as high-impact.

b) E2 - Only measure run-time overhead: Papers which
do not measure important sources of overhead other than
runtime are incomplete. However, the impact of this incom-
pleteness differs from case to case. If, for example, memory
overhead can theoretically be assumed to be minor and similar
to prior work, the impact is limited. If, on the other hand,
there is reason to believe the paper incurs significant memory
overhead yet does not measure it, this could be a problem for
later papers that improve on this overhead.

c) E3 - False positives/negatives not tested: The lack of
testing for false positives or negatives is potentially a major
issue because if the number of these is substantial it could
greatly affect the practicality or effectiveness of the approach.
Without this information, it may be impossible for a reader to
properly assess how valuable the contributions of the paper are.
That said, in practice the impact depends on the type of system
presented. In some cases false positives may crash the system
while in others they merely result in performance degradation.

d) E4 - Elements of solution not tested incrementally: If
elements of the presented system are not tested incrementally, it
is unclear whether all parts of the approach are indeed necessary
to implement a system that is as effective and efficient and
therefore it is also unclear whether all the components are
actually contributions.

F. Missing information

a) F1 - Missing platform specification: In all cases, this
benchmarking flaw makes reproducing the exact results based
on the contents of the paper impossible and it may make the
results less comparable. However, it does not affect the validity
of the results.

b) F2 - Missing software versions: This benchmarking
flaw hampers reproducibility, as the software about which
information is missing should be expected to have an impact
on performance.

c) F3 - Subbenchmarks not listed: The impact of this
benchmarking flaw is somewhat hard to estimate. Although
the lack of important information always affects completeness
of the paper, it may even result in measurements that are
unsound and misleading. This is the case, for example, if the
omission obscures the fact that the results are greatly affected
by outliers or that only a subset of the benchmarking suite is
run. The latter also makes the results incomparable. While it is
impossible to tell whether this is the case due to the missing
information, our results for flaw A2 suggest the practice of
unjustified subsetting is widespread. Because of the wide range
of possible consequences of this flaw it seems likely there is
some relevant impact for almost every paper that contains this
flaw and, as such, we consider it high-impact.

d) F4 - Relative overheads only: We have not found this
flaw in its worst form, so we cannot determine the practical
impact. As for leaving out an absolute baseline, we have
found one case of D1 (no proper baseline) where the presented
absolute baseline was clearly inconsistent with the reference
baseline for the benchmark. This means the measurement was
performed incorrectly, something that would not have been
clear without the absolute baseline. As such we believe that
the mild version of this flaw does impact some cases.

VI. RECOMMENDATIONS

While our analysis shows that benchmarking flaws are very
common and potentially have a major impact on the quality of
published research in systems security, it also reveals that the
quality of published research could be greatly improved with
little effort by paying extra attention to the most important
flaws.

The primary focus should be on preventing common high-
impact benchmarking flaws. The most common high-impact
benchmarking flaws are A1 (not evaluating potential per-
formance degradation), B2 (throughput degraded by x% ⇒
overhead is x%), and D1 (no proper baseline). We believe
authors should consider these flaws early on in the research
process to ensure they set up the right benchmarks.

To address A1, authors should consider which performance
dimensions the solution could possibly affect (for example,
CPU, concurrency, memory, IO, system calls, . . . ) and include
at least one appropriate benchmark for each dimension. Authors
can address B2 by ensuring the system is always fully loaded
while benchmarking. Typically, this is simply a matter of setting
up a sufficient number of concurrent operations on workloads
that would otherwise be bound by IO latencies. If this is
not feasible, an alternative is to present the CPU load on
both the baseline and the experimental setup in the paper.
Benchmarking flaw D1 can be addressed by considering the way
the system protected by the provided solution, which would be
used in a setting where the presented solution is not available.
Often, this means avoiding any non-default compiler flags
or emulation techniques that would slow down the baseline.
Moreover, authors should always specify what the baseline is.

A number of common benchmarking flaws is not necessarily
high-impact, but very easy to address and we believe every
author should go through the list to avoid them. In particular,
flaws B4 (no indication of significance of data), B5 (incorrect
averaging across benchmark scores), F1 (missing platform
specification), and F2 (missing software versions) can be
addressed by simply adding readily available data to the paper.
Yet, each of these flaws is found in more than 10 papers in the
sample. Although F4 (relative overheads only) is not found in
the papers in our survey in the worst form, many papers can
still be improved by adding an absolute baseline. Addressing
each of these issues should take almost no time (and space),
yet it would greatly improve many of the papers in our survey.

One more benchmarking flaw is neither high-impact nor
trivial to address, but it is so common that we feel it deserves
more attention since it does have a major overall impact



on the quality of research in our field. A2 (benchmark
subsetting without proper justification) does not always have
a large impact, but it may result in overly optimistic (or
completely incorrect) overall overheads. Authors should run
all subbenchmarks that can reasonably be run and be explicit
about reasons for omitting the others. Moreover, they should
not present the overall result as if it is a complete result that
can be compared with other papers using the same benchmarks.

While we hope authors avoid all the benchmarking flaws
discussed in this paper, we believe that following the recommen-
dations here would at least be a first step to greatly improve
the research quality in systems security with relatively little
effort. Had all the authors followed these simple rules, it would
almost triple the number of papers without any high-impact
flaws or underspecified (from 8 to 22 papers), greatly increase
the number of papers that contain no flaws at all (from 1 to
9 papers), and reduce the average number of flaws per paper
by almost two thirds (4.6 to 1.7 for all flaws, 1.5 to 0.6 for
high-profile flaws).

VII. LIMITATIONS

Although we have performed this survey as carefully as
possible, there are a number of limitations on its applicability
that are hard to avoid.

First, we do not claim that either our list of benchmarking
flaws or our dimensions of evaluation quality are complete.
Similarly, we do not seek comparison with other systems fields,
as the distribution of flaws is inherently field-specific. There
are many more benchmarking flaws possible in the broader
computer systems field. The ones we examined are merely some
of the most important issues that stand out for being common
problems in systems security papers, especially defenses.

Second, in some cases, whether a particular benchmarking
flaw is present, or even whether it applies to a paper is
subjective. Other people could reach somewhat different
conclusions, although we did make an effort to be lenient
in borderline cases so as to be conservative in our analysis.
We also discussed borderline cases among ourselves and
always consulted an independent reader as necessary. Whenever
possible, we explicitly discuss these cases in Section IV. We
also cannot rule out that, despite the care we put into our
analysis, there can be mistakes or oversights. Hopefully, this
only concerns a small fraction of the paper/flaw pairs.

A third limitation is the fact that we cannot be transparent
about which papers contain which flaws. While this would be
better for reproducibility and allowing others to verify our work,
we think that naming and shaming would be counterproductive
as in our opinion the problem is not with individuals but
rather the community as a whole. Moreover, we think it would
not be appropriate to create what amounts to a ranking of
individuals or institutions given that not all flaws are equally
severe and the lack of the specific flaws we consider does
not imply that there are no other flaws in the paper. In
avoiding this, we follow common practice in papers that
perform similar surveys [12]–[15]. To compensate, we added a

detailed discussion in Appendix A that should allow others to
perform the survey themselves according to the same criteria.

Fourth, popular research topics have changed over time,
which makes a direct comparison between percentages in 2010
and 2015 hard. Different types of papers are subject to different
types of benchmarking flaws. All we can and did do is show
that benchmarking flaws were a problem at both points in time.

Finally, published papers are not necessarily a representative
sample of all papers, especially at the top conferences. One
would hope the review process weeds out the papers which
contain the worst benchmarking flaws, but one cannot rule
out that benchmarking flaws make acceptance more likely if
they are not too obvious and appear to improve the presented
results. Either possibility creates a bias when applying our
survey results to papers submitted for review.

VIII. FUTURE WORK

We do not intend for this paper to be the last word on
benchmarking flaws, and believe there is considerable need for
further investigation of benchmarking practices. In particular,
(1) we have focused primarily on performance, while measuring
security is also of critical importance, and often even harder to
measure properly. (2) While we surveyed all eligible papers in
all tier-1 security venues for 2010 and 2015, a larger sample
size is always desirable to be able to draw stronger conclusions.
The most logical way to increase the sample size would be to
consider more years. However, given that we found minimal
differences between the two years currently surveyed, we
believe that a larger sample over recent years would not yield
significantly different results. (3) With a larger sample size,
it would also become possible to compare different areas of
systems security. (4) In cooperation with conference organizers,
it would be possible to compare submitted, accepted, and
camera ready paper. This would be valuable to evaluate the
effectiveness of the review process.

In addition to more research into current benchmarking
practices, we call upon the community to also establish
consensus on a set of best practices. Leading researchers in each
subfield could together establish a set of accepted benchmarks
and write a performance evaluation guide.

IX. RELATED WORK

a) Benchmarking in systems security: While there have
been several surveys to determine whether computer science
papers perform measurements in appropriate ways [12]–[15],
[17]–[20], to the best of our knowledge none of them is
specific to benchmarking in systems security. The most closely
related work is Heiser’s original web page about benchmarking
crimes [1], which serves as inspiration for this paper. Compared
to Heiser’s web page, we propose an extended classification
and present a systematic analysis of benchmarking flaws in
peer-reviewed defense papers. We also formulate concrete
recommendations.



b) Surveys considering evaluation quality: A number
of authors have performed surveys to determine how well
papers in various fields evaluate their work. Kuz et al. [18]
survey benchmarking for multi-core systems to propose a better
approach, but only survey six papers. Skadron et al. [20]
survey papers in computer architecture to determine their
topics and performance evaluation techniques. They provide
an overview and discussion of the various techniques, but
do not go in depth about incorrect benchmarking practices.
Kurkowski et al. [13] survey papers using simulation techniques
for mobile ad-hoc networks (MANET) and identify common
pitfalls. Krishnamurty and Willinger [21] discuss common
pitfalls in networking measurements using illustrative examples
of flaws, but do not perform a systematic survey. Mogul [19]
surveys papers to determine what types of benchmarks are
commonly used in operating systems papers. However, it
considers only benchmarks realism, not appropriate use. Traeger
and Zadok [14] survey benchmarks in file systems and storage
research. However, they limit themselves to setting up the
benchmarks and do not consider whether the results are
handled appropriately. Mytkowicz [15] presents a survey to
determine whether measurement error is considered correctly
in computer systems experiments and provides suggestions
on how to improve this. Aviv and Haeberlen [17] survey
botnet research, but focus on correctness evaluations rather than
performance. Collberg et al. [22] survey a number of computer
systems papers to examine their repeatability, but focus on
being able to locate, build, and run the system prototypes.
No attempt is made to reproduce the experimental results or
assess the quality of benchmarking results. Rossow et al. [12]
study the methodological rigor and prudence in papers using
malware execution. While their approach to identifying flaws
and surveying is similar to ours, the pitfalls they identify are
quite different because they focus on malware analysis rather
than on performance.

c) Benchmarking advice: Some other papers also provide
benchmarking advice but do so without a systematic survey,
instead using examples, and their own tests to verify the
identified pitfalls result in questionable results. Schwarzkopf
et al. [23] identify benchmarking problems in cloud research
and Seltzer et al. [24] discuss problems with standardized
benchmarks in file systems research. While these studies
demonstrate important benchmarking problems, the lack of a
survey means they cannot determine the impact these potential
problems have on the research literature.

X. CONCLUSION

While the security community devotes much effort to
defending systems from increasingly dangerous threats, it
devotes much less attention to the correctness of research results.
Benchmarking flaws, in particular, have been largely neglected.
As the focus of systems research is increasingly shifting
to practical, low-overhead defenses, benchmarking flaws are
increasingly relevant and are now the elephant in the room. We
assessed the magnitude of the problem in 50 defense papers in
top systems security venues, showing that benchmarking flaws

are widespread and show no sign of improvement, hampering
research comparability and reproducibility. Encouragingly,
many common benchmarking flaws can be easily prevented by
following our guidelines for authors.
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APPENDIX

In this appendix we discuss the conclusions from our survey
for the individual benchmarking flaws introduced in Section II.
In each subsection, we elaborate on one group of benchmarking
flaws. Where appropriate we use examples from the papers
we surveyed, but to keep the discussion anonymous with
regard to the papers in our sample, we either abstract away or
change some of the details. We also consider what impact the
benchmarking flaws we found are likely to have on the results.
Due to space constraints, we omit flaws for which no cases
require specific discussion.

A. Selective benchmarking

Benchmarking flaws related to selective benchmarking are
very common. 40 out of the 50 papers in our sample (80%)
contain at least one of the three flaws in this group and
one additional paper does not provide enough information
to determine whether this element is performed correctly. This
is largely due to benchmarking flaw A2 in this group.

A1 - Not evaluating potential performance degradation:
Not evaluating potential performance degradation is a relatively
common benchmarking flaw. There are two main manifestations
of not evaluating potential performance degradation. The most
obvious case are those papers which provide no meaningful
measurement of run-time performance for some or all of the
systems presented. We found this to be the case for seven
papers in our sample. A more subtle case are those papers
that do present run-time performance numbers, but where the
benchmarks used to measure those numbers are inappropriate
for the presented system, not reflecting an important element
of its potential performance impact. This occurs for eight
papers in our sample. Examples include not using a memory-
intensive benchmark for systems likely to affect memory
accesses, using a single-threaded workload for systems that
benefit from additional cores, using benchmarks that do not
stress instrumented calls, or omitting start-up/warm-up periods
that might be affected by the system. While these papers do
present run-time performance numbers, they are not meaningful
for comparisons to similar systems.



A2 - Benchmark subsetting without proper justification:
This is the most common benchmarking flaw in this group.
The most common benchmarking setup in our sample is the
use of the SPEC CPU [10] benchmarks, which is the case for
18 out of 50 papers (36%). These CPU-intensive benchmarks
are appropriate to test single-threaded performance of systems
that insert instrumentation which requires the CPU and the
memory to do more work to run the program.

However, many papers only run a subset of the benchmarks.
The papers from our sample show that overhead often differs
greatly between subbenchmarks, often showing at least an
order of magnitude difference between best and worst overhead.
In particular, perlbench, xalancbmk, and povray often stand
out for high overhead, so omission can have a large impact
on the overall result. However, the hardest subbenchmark
depends on the system, so leaving out any can have a large
and unpredictable impact on the overall result.

Leaving out SPEC subbenchmarks for legitimate reasons is
common and we have been lenient in these cases even though
any overall score from an incomplete benchmarking suite is
somewhat misleading. All papers in our sample that use SPEC
leave out the benchmarks written in the Fortran language,
instead using only the C and/or C++ ones. We consider this
to be justified because the prototypes built to test the designs
in these papers only support C and/or C++. Moreover, it does
not affect comparability because this practice is widespread
in the systems security literature. Another justified case of
subsetting is the use of only C++ benchmarks for systems
that do not apply to programs that are purely written in C.
Given that these systems would not be applied to C programs
in practice, their overhead on C has little meaning for their
practicality. In three cases, a subset of the benchmarks was
omitted because the system was based on a framework which
does not support them. We consider this acceptable if it is
clearly indicated because it is hard to avoid incompatibilities
in third-party software. Another case is the use of a subset in
a detailed evaluation after presenting overall numbers for the
full set. It is sensible to limit such an in-depth investigation to
the most interesting cases, generally those with most overhead,
and it provides more insight in which cases are hard for the
system to deal with without affecting comparability. We have
not marked any of the cases described in this paragraph as a
benchmarking flaw because they are properly justified.

Although there can be legitimate reasons to select a subset
of benchmarks, we also found a large number of papers that
did not properly justify their subbenchmark selection. Four
papers leave out a number of SPEC subbenchmarks seemingly
arbitrarily without even mentioning explicitly that they were
left out. This is a serious omission because these papers present
an overall overhead number that does not actually represent the
entire benchmarking suite, misleading readers into believing
that this number is directly comparable with those measured
for other solutions. While these subbenchmarks may have
been left out for legitimate reasons—for example they might
not contain the type of memory safety bugs that the system
defends against—it is crucial to explain why these particular

benchmarks cannot be run with the system. This not only
justifies the lack of comparable numbers, but also indicates the
effectiveness or the limits of the solution and helps competitors
compare their solutions on these issues as well.

A second problem we found is leaving out the floating point
benchmarks of SPEC CPU without justification, which is a
problem in four of the papers in the sample. While this is not
a random subset of SPEC CPU, it is problematic because there
are several C++ benchmarks in the floating point benchmarks.
C++ programs tend to allocate relatively many small heap
objects, which stresses allocator instrumentation, and contain
many virtual function calls, which stresses indirect branch
instrumentation. This means that for certain classes of defenses,
leaving out the floating-point programs is likely to result in
underestimating performance overhead.

Another problem we found in two papers that use SPEC is
mixing subbenchmarks from two different versions, namely
SPEC CPU2000 and CPU2006. While these benchmarking
suites have some programs in common, they use different
workloads and their results are therefore not interchangeable.
The benchmarking suites are designed to be used as a balanced
whole and mixing versions results in unpredictable deviations
in the overall results, making those numbers incomparable.

One final problem that we found among the papers using
SPEC CPU is the use of an incorrect justification for leaving out
subbenchmarks. In particular, we found claims that some of the
subbenchmarks do not perform some instrumented operations
while in reality they do. Those subbenchmarks have thus been
omitted in error, although the impact here is less prominent
than cases where benchmarks have been omitted arbitrarily
since at least the incompleteness of the benchmarking suite is
clearly acknowledged. Overall, we found a substantial number
of cases where papers using SPEC CPU improperly select a
subset of the benchmarks and it seems plausible that this has
a substantial impact on the comparability of the results.

Not all papers use SPEC CPU to evaluate performance,
although some do use other standard benchmarking suites that
test specific types of systems, for example to evaluate the
performance of operating systems [25], [26] or browsers [27],
[28]. We found four such papers that use a subset of benchmarks
without justification. The impact in these cases is similar
to those where we found a subset of SPEC CPU is used.
In one additional case, a paper modified subbenchmarks
without stating why this was necessary. Like subsetting through
selection, this practice has a strong impact on comparability.

Papers that do not use a standard benchmarking suite
generally use a selection of supported programs and workloads
for them to measure performance. This is in itself acceptable as
there is not always a suitable benchmarking suite available. A
common example is the use of ApacheBench [29] to measure
the performance of instrumented server programs. However,
even in these cases, it is important to justify selection and avoid
misrepresentation of the results. We found five papers that
presented a number of supported programs, but then selected
an unjustified subset of these programs for benchmarking. This
is problematic in cases where competing solutions do include



them, leaving the reader wondering which solution would be
faster, had the evaluation been more complete.

Another issue, which we found in one paper, is computing
an overall overhead figure over a number of self-selected
programs. While this may be useful to informally summarize
overhead trends, it cannot be used as a reference performance
figure because such a figure strongly depends on the selection
of the programs. Instead, it would be more appropriate to
provide a range of overheads or always mention each program
individually.

Finally, when defending against vulnerabilities, it is impor-
tant to ensure that the defense can prevent attacks in practice.
For this reason, many papers use vulnerabilities registered in the
CVE database [30]. While this is an excellent way to assess the
effectiveness of defenses, authors generally select only a small
number of CVEs to evaluate their solution with. While this is
understandable given the often heroic effort, it is important to
ensure that these CVE entries are representative. We found five
papers that lack a systematic selection of vulnerabilities. This
means there is a risk of a biased selection, masking limitations
in the effectiveness of the solution being evaluated.

A3 - Selective data sets that hide deficiencies: Problems with
selective data sets are not as common as the other benchmarking
flaws in this group. We found four papers where the impact of
an important variable is not considered in workload selection.
An example is not considering different levels of concurrency
when concurrency is expected to influence performance. There
are two papers in our sample where graphs suggest that
performance might reach a threshold but the range of the
x-axis is too limited to see it.

B. Improper handling of benchmark results

Improper handling of benchmark results is a very common
group of flaws. 44 out of the 50 papers in our sample (88%)
contain at least one of the five flaws in this group and two
more papers lack enough information. This is mostly because
lack of indication of significance (B4) is very common in our
sample.

B1 - Microbenchmarks representing overall performance:
It is noteworthy that the use of microbenchmarks was much
more common in 2010 (14 out of 16 papers, 88%) than in
2015 (10 out of 34 papers, 29%). This flaw was more common
in 2010 even relative to the larger number of applicable cases.
In five cases, papers only present microbenchmarks and base
their performance claims on these microbenchmarks. While
there is one more paper that presents only microbenchmarks,
we have not labelled it as a flaw since it only affects rare
operations that cannot realistically affect performance overhead
on macrobenchmarks; we consider it appropriate in cases where
microbenchmarks can reveal overhead that macrobenchmarks
would not. Finally, one paper presents both microbenchmarks
and macrobenchmarks but bases its performance claims on
the microbenchmarks even though the macrobenchmarks show
substantially more overhead.

B2 - Throughput degraded by x% ⇒ overhead is x%:
For most papers in our sample, this flaw comes down to not

ensuring that the benchmark fully loads the CPU(s). Most
papers avoid this flaw by either using a benchmarking suite
known to be CPU-bound or by ensuring that a manually
constructed benchmark fully loads the CPU, for example by
running multiple concurrent threads until all cores are fully
loaded. Fifteen papers contain this flaw by using a benchmark
that is not clearly CPU-bound without taking precautions to
ensure the CPU is fully loaded, while one other paper computes
overhead from latency rather than from throughput. In both
cases, there is a substantial risk that the actual overhead is
underestimated because the overhead computation does not
consider the extra CPU load introduced by the protection
mechanism being evaluated.

B3 - Bad math: While this type of benchmarking flaw is
relatively uncommon, it is very diverse. The most common
variety is to use magic numbers that are not supported
by experiments in overhead computations. In these cases,
the results cannot be considered methodologically sound.
Another case of bad math is not considering some required
instrumentations in the overhead numbers, for example if the
approach relies on the use of non-default compiler passes.
This results in an underestimation of the overhead that a user
would experience in practice. Another instance we found is to
use percentage points to compare overhead. For example, if
solution A incurs 10% overhead and solution B incurs 20%
overhead then B has 100% more overhead than A, not 10%.
This misleads the reader into thinking that the differences are
smaller than they really are. One final issue we found is to
mark overhead as negligible because it is small compared to
the standard deviation. While this logic holds if the standard
deviation is reasonable, a large standard deviation is more
likely to mean that the experiment is set up incorrectly and the
results are unreliable. The proper reaction would be to improve
the experiment to reduce measurement error or, if this is not
feasible, provide a confidence interval on the overhead.

There is one more common issue with overhead computation,
namely computing an overall overhead when a number of
subbenchmarks have substantial negative overhead. We did
not mark it as a flaw as it can be a legitimate effect of
random measurement errors, but we do want to raise the issue
that it is important to explain why overhead is negative for
systems that should only decrease performance. Large negative
overheads can be an indication that the experiment is set up
incorrectly and authors should make an attempt to set up the
experiment in such a way as to reduce measurement errors.
Mytkowicz et al. [15] provide guidelines on how to achieve
this. If negative overhead is simply ignored, it may result
in inaccurate performance numbers which are unsuitable for
comparison with competing solutions. In summary, bad math
is a broad group of benchmarking flaws which can often result
in misleading and inaccurate results.

B4 - No indication of significance of data: The lack of an
indication of significance is a very widespread problem. We
expect papers that perform measurements that are subject to
random fluctuations, such as runtimes or throughput numbers,
to perform multiple runs to reduce standard errors and to allow



the standard deviation to be measured. Papers should present
the standard deviation or level of significance for such numbers.
We also accepted a general statement that ensures that variation
is low, such as “all standard deviations are below 1%”. It should
be noted that even the default configuration of SPEC CPU2006
suffers from this problem, as it computes the average over
only three runs. To be able to compute a meaningful standard
deviation, one needs to run CPU2006 more often.

B5 - Incorrect averaging across benchmark scores: One
paper used the arithmetic mean to average absolute overhead
numbers, which is acceptable and we did not count this as a
flaw. Another paper presents overhead as a range, which is
also acceptable to obtain an overall indication of overhead.

C. Using the wrong benchmarks

Using the wrong benchmarks is a less common flaw, with
14 out of the 50 papers in our sample (28%) containing at least
one of the three flaws in this group and 5 additional papers
(10%) not providing enough information. However, the flaws
in this group can have a major impact on the validity of the
benchmarking results.

C1 - Benchmarking of simplified simulated system: We did
not count benchmarking a simplified simulated system as a flaw
in cases where the use of a simplified system was explicitly
acknowledged and there was no practical way to avoid or
compensate for it, for example because the system relies on
hardware that is not yet available. In two of the papers that
contain this flaw we found that performance was measured
in a virtualized environment without need. Virtualization does
not incur a uniform slowdown, but slows down hypervisor
invocations much more than unprivileged operations. As a
consequence, numbers measured in a virtual machine cannot
be meaningfully translated to numbers that would be measured
on the bare metal. Three other papers omitted some operations
that would need to be performed if the system were used
in practice. Two of these cases were unjustified, while the
third had a good reason but did not consider the impact on
performance.

C2 - Inappropriate and misleading benchmarks: The use
of inappropriate and misleading benchmarks is moderately
common. Although all the instances we found are in papers
published in 2015, the χ2-test reveals that this can reasonably
be the case due to mere chance (p = 0.198). Papers that make
this mistake commonly also have a problem with not evaluating
potential performance degradation (benchmarking flaw A1)
because inappropriate benchmarks often do not reveal important
cases where the system incurs overhead. The difference between
the two is that A1 applies if an important type of benchmark
is missing even if the included benchmarks are appropriate,
while A3 can apply even if some of the other benchmarks
cover the relevant performance dimensions.

A typical example in the papers we surveyed includes the
use of IO-bound workloads in systems that introduce extra
CPU load. This results in benchmark results that suggest
unrealistically low overhead. This poses a major problem for
later work, which is now expected to compare its performance

against the overly optimistic numbers measured before. Another
situation is the case where single-threaded single-process
benchmarks are used to test systems where concurrency is
important, for example because they affect multiple cores. Like
in the previous case, the benchmark ignores an important part
of the overhead.

One final problem is the use of performance benchmarks in
cases where high coverage is important, for example to detect
false positives. Since performance benchmarks are typically
repetitive and do not test error paths, they will not reach high
coverage, revealing fewer false positives.

D. Improper comparison of benchmarking results

16 out of the 50 papers in our sample (32%) contain at
least one of the three flaws that have to do with improper
comparison of benchmarking results. In addition, 6 more papers
are underspecified with regards to the criteria in this group.

D1 - No proper baseline: This benchmarking flaw stands out
for having most papers by far that are underspecified. This is an
important problem, not only because it means a reader cannot
verify whether the baseline is reasonable but also because
it hampers reproducibility. While the correct baseline should
often be obvious, good experimental methodology requires
being explicit about it.

The benchmarking flaw of not using a proper baseline was
found in 12 out of 50 papers (24%). Five papers did not use
a baseline at all, presenting only raw numbers that do not
give a good indication of overhead. Another five papers used
a nonstandard configuration for the baseline, such as running
on top of an instrumentation framework or using nonstandard
compiler options. In four of these papers, this likely means
that performance overhead is underestimated, while in a fifth
the baseline was easier to attack than a standard system.

One more paper used a simplification for the experimental
system without applying the same treatment to the baseline.
A more appropriate approach would be to measure both and
use whichever approach is faster as the baseline. Finally, we
found a paper where a memory baseline is off by more than
an order of magnitude from the published reference baseline
for the same benchmark. This strongly suggests that it has
been measured incorrectly and such a difference requires an
explanation in the paper.

D3 - Unfair benchmarking of competitors: This flaw only
applies to the 15 of the 50 papers (30%) that actually perform
a comparison. In two papers, we found competing solutions
were presented as having much higher overhead than in their
original paper with no explanation. Another paper selected
an unoptimized number for comparison, while an optimized
version was presented in the original paper. In the fourth case,
the configuration is inappropriate.

E. Benchmarking omissions

We found that 30 out of 50 papers (60%) omit some
important benchmarking configurations, containing one or more
of the four benchmarking flaws in this group.



E1 - Not all contributions evaluated: We found that 6 out of
50 papers do not evaluate all claimed contributions. In particular,
four papers do not test their effectiveness in securing programs
while two others do not evaluate the performance on some
relevant applications.

E2 - Only measure run-time overhead: While most papers
evaluate run-time overhead, this is often not the only relevant
performance characteristic. In most cases, memory overhead
is expected but not benchmarked. Given that memory usage
can often be traded off against run-time performance and that
memory is a limited resource that must be shared between
applications running on a system, performance measurements
are not complete without measuring memory overhead. This
means that, for example, a paper that achieves similar run-time
performance but greatly reduces memory overhead compared
to the state of the art is worth publishing. If prior work
lacks an evaluation of memory overhead, it becomes harder to
improve on it. Other missing measurements include the amount
of extra network and/or disk IO, increased binary size after
instrumentation, and the time taken to instrument the protected
program. Like for memory, we have only counted cases where
these performance dimensions were not presented if there is a
reasonable expectation that there may be significant overhead.

F. Missing information

20 out of 50 papers (40%) contain at least one of the four
benchmarking flaws in this group, leaving out some information
that is important for completeness, reproduction and/or sanity
checking.

F1 - Missing platform specification: 11 out of 50 papers
(22%) do not provide a full specification of the hardware used
to run the benchmarks. Out of these, five do not give any
information, five more do not provide information about the
networking setup and the final one provides some information
about the networking setup but it is incomplete.

F2 - Missing software versions: This benchmarking flaw is
found in 12 out of 50 papers (24%). In six cases the paper
does not specify the operating system used, two papers do
specify the operating system but not its version number, one
paper does not specify which hypervisor is used, and three
papers do not specify any information at all about the software
used to evaluate their systems.

F3 - Subbenchmarks not listed: This benchmarking flaw
is applicable to the 38 out 50 papers (76%) which use
subbenchmarks and, out of these, 7 (18%) contain the flaw.
While another also does not list subbenchmark results explicitly,
the number of applications it was tested with is so large that
presenting all of them would be unpractical. Moreover, it does
provide extensive statistics about the subbenchmarks, which
compensates for the missing information. Therefore, we decided
not to count it. Still, it would have been even better to discuss
the methodology used to select the benchmarks that were used.
The other papers do not provide additional information that
can compensate for this lack of completeness.

F4 - Relative numbers only: This flaw is applicable to 48
out 50 papers (96%), but none of these papers contain the flaw

in its worst form. 24 out of 48 applicable papers in our sample
(50%) include only overheads.
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